计育韬:基于AI的数据可视化设计入门工作流

大家好,我是交互设计师计育韬。之前我在《AI(Claude)在 手 ,SVG 自 由 !》中,曾为广大 AIGC 爱好者们梳理了全 AI 工作流的数据可视化设计方法------但不少初学者反馈,全部基于 AI 的创作方式对新人来说还是太难,那么有没有一种在视觉设计、交互开发方面能让创作者更有主控性的形式,来更高效创作 Data Visualization?

特此我又通过一期《中国预制菜行业|数据可视化报告(Deepseek/豆包生成)》,来为大家演绎了更轻量化的创作效果,本期计育韬老师带你拆解其中的 AIGC 应用细节。

把 AI 工具更多投入数据工作

真正身处 infographic 行业的人一定知道,数据可视化的主要工作量其实并不在于设计,而是在于数据采集、清洗与梳理。以往我们在定立选题后,甚至要经历漫长的调研、访谈等形式才能初步完成作品设计的数据基础准备工作。

但在这次创作中,我在开篇便提到了数据源,事实上包括具体数据的选择也是由豆包一步到位完成的:

接下来,计育韬老师明确告知 AI 当下的创作目的,和我所计划的创作形式(使用多种图表制作数据可视化内容),要求 AI 具体从三份市面上的数据报告中整合并分项为多个数据维度:

这就意味着,AI 不仅在若干分钟内完成了所有可信数据源的采集工作,同时根据 Data Visualization 的表现特征遴选了恰当的表现手法所对应的数据集------按常理说来,上述工作可能就已经要耗费设计师 2 - 3 天的时间进行漫长的校对与策划。

确定设计风格

在《AI(Claude)在 手 ,SVG 自 由 !》中,计育韬老师通过提示词和一定的 AI 会话流程,让 Claude 大模型按部就班地遵循某种设计效果,按顺序逐步铺开视觉设计。

但这种方法存在的弊端是:1)即便原始数据已完成积累,大模型在二次加工处理数据时容易产生「幻觉」,自行篡改数据。2)调试过程繁琐,一些直观的设计学错误你可能需要反复多次提示才能让 AI 理解并在指定位置完成正确修改。

对于前者,有时候我们很难察觉到这类幻觉式篡改,可能会导致最终的呈现有严重失信。对于后者,一些视觉修改其实对专业设计师而言只是几秒种的工作,但调试 AI 可能要经历几十分钟才能修正。

因此对于新人,可以参考本作《中国预制菜行业|数据可视化报告(Deepseek/豆包生成)》中计育韬老师的处理思路。

直接在 PS 内排布文案,贴入素材图,仅预留数据图表的数据信息位置(如柱、环、线等),通过钢笔工具快速绘制完参考线------这方面工作对专业设计而言其实也就最多半小时而已,但却能极大节约与人工智能「对峙」的时间。

基于专业软件生成动态

目前对于 Animation 的部署,我个人习惯通过 E2 编辑器(www.e2.cool)开展。该产品本身虽然并非专注于数据可视化这一垂直领域服务,但它舍弃了各类 JS 的辅助支持,却依然能将广泛的 SVG 动画效果内联式展示,就我所知已有超过 1900+ 种 SVG 动画与交互效果理论上都能植入数据可视化设计内。

对比我的高阶教程《AI(Claude)在 手 ,SVG 自 由 !》,设计师可以跳过 AI 训练的流程,直接使用 E2 编辑器内成熟可靠的 SVG 模版部署动画。

同时这里我也补充给大家具体的编辑器内操作区截图,相信通过这样的简易工作流,新人可以更快基于 AI 完成你们的数据可视化作品!

-END-

相关推荐
lhrimperial2 分钟前
AI工程化实践指南:从入门到落地
人工智能
jifengzhiling18 分钟前
零极点对消:原理、作用与风险
人工智能·算法
科技看点20 分钟前
想帮帮服务智能体荣获2025 EDGE AWARDS「最佳AI创新应用」大奖
人工智能
Elastic 中国社区官方博客20 分钟前
让我们把这个 expense 工具从 n8n 迁移到 Elastic One Workflow
大数据·运维·elasticsearch·搜索引擎·ai·信息可视化·全文检索
m0_7048878925 分钟前
DAY 40
人工智能·深度学习
Katecat9966331 分钟前
【海滩垃圾检测与分类识别-基于改进YOLO13-seg-iRMB模型】
人工智能·数据挖掘
程序员佳佳1 小时前
2025年大模型终极横评:GPT-5.2、Banana Pro与DeepSeek V3.2实战硬核比拼(附统一接入方案)
服务器·数据库·人工智能·python·gpt·api
鲨莎分不晴1 小时前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
工业机器视觉设计和实现1 小时前
lenet改vgg成功后,我们再改为最简单的resnet
人工智能
jiayong231 小时前
Spring AI Alibaba 深度解析(三):实战示例与最佳实践
java·人工智能·spring