大数据Spark(六十五):Transformation转换算子groupByKey和filter

文章目录

Transformation转换算子groupByKey和filter

一、groupByKey

二、filter


Transformation转换算子groupByKey和filter

一、groupByKey

作用在K,V格式的RDD上,根据Key进行分组,返回(K,Iterable <V>)。对于需要对相同key进行聚合的场景使用reduceByKey更高效,因为reduceByKey会在各个分区中预先进行本地聚合,减少数据传输数量。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("GroupByKeyTest");
JavaSparkContext sc = new JavaSparkContext(conf);

JavaPairRDD<String, Integer> pairRDD = sc.parallelizePairs(Arrays.asList(
        new Tuple2<>("a", 1),
        new Tuple2<>("b", 2),
        new Tuple2<>("c", 3),
        new Tuple2<>("a", 4),
        new Tuple2<>("b", 5),
        new Tuple2<>("c", 6),
        new Tuple2<>("a", 7),
        new Tuple2<>("b", 8),
        new Tuple2<>("c", 9)

));

//groupByKey:将数据源中的数据,按照相同的key对value进行分组,形成一个新的可迭代的value
JavaPairRDD<String, Iterable<Integer>> result = pairRDD.groupByKey();
result.foreach(new VoidFunction<Tuple2<String, Iterable<Integer>>>() {
    @Override
    public void call(Tuple2<String, Iterable<Integer>> tp) throws Exception {
        String key = tp._1;
        Iterable<Integer> values = tp._2;
        int sum = 0;
        for (Integer value : values) {
            sum += value;
        }
        System.out.println(key+":"+sum);
    }
});

sc.stop();

Scala代码:

Scala 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("GroupByKeyTest")
val sc = new SparkContext(conf)

//groupByKey: 将RDD中的元素按照key进行分组
val result: RDD[(String, Iterable[Int])] = sc.parallelize(List(("a", 1), ("b", 2), ("c", 3), ("d", 4), ("a", 5), ("b", 6), ("c", 7), ("d", 8)))
  .groupByKey()

result.foreach(tp=>{
  val key: String = tp._1
  val values: Iterable[Int] = tp._2.toList
  var sum = 0
  for (value <- values) {
    sum += value
  }
  println(s"key:${key},sum:${sum}")
})

sc.stop()

二、filter

过滤符合条件的记录,根据传入的逻辑返回true的数据保留,返回false的数据过滤掉。

案例:过滤数据中长度大于5的字符串。

Java代码:

java 复制代码
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("filter");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> rdd1 = sc.parallelize(Arrays.asList("zhangsan", "lisi", "wangwu", "maliu"));
// filter:过滤长度大于5的字符串
JavaRDD<String> rdd2 = rdd1.filter(new Function<String, Boolean>() {
    @Override
    public Boolean call(String s) throws Exception {
        return s.length() > 5;
    }
});
rdd2.foreach(s -> System.out.println(s));
sc.stop();

Scala代码:

Scala 复制代码
val conf = new SparkConf().setMaster("local").setAppName("filter")
val sc = new SparkContext(conf)

//filter:过滤长度大于5的字符串
val rdd: RDD[String] = sc.parallelize(Array("zhangsan", "lisi", "wangwu", "maliu"))
rdd.filter(str=>{str.length > 5})
  .foreach(println)
sc.stop()

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
相关推荐
千里码aicood5 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
非著名架构师7 小时前
城市通风廊道的科学依据:气候大数据如何指导未来城市规划设计
大数据·风光功率预测·高精度气象数据
IIIIIILLLLLLLLLLLLL7 小时前
Hadoop集群时间同步方法
大数据·hadoop·分布式
搞科研的小刘选手7 小时前
【经管专题会议】第五届大数据经济与数字化管理国际学术会议(BDEDM 2026)
大数据·区块链·学术会议·数据化管理·经济理论
蓝耘智算7 小时前
GPU算力租赁与算力云平台选型指南:从需求匹配到成本优化的实战思路
大数据·人工智能·ai·gpu算力·蓝耘
liliangcsdn7 小时前
如何用bootstrap模拟估计pass@k
大数据·人工智能·bootstrap
DMD1688 小时前
AI赋能旅游与酒店业:技术逻辑与开发实践解析
大数据·人工智能·信息可视化·重构·旅游·产业升级
Elastic 中国社区官方博客9 小时前
Elasticsearch 中使用 NVIDIA cuVS 实现最高快 12 倍的向量索引速度:GPU 加速第 2 章
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·数据库架构
jqpwxt9 小时前
启点智慧景区多商户分账系统,多业态景区收银管理系统
大数据·旅游
jkyy20149 小时前
线上线下融合、跨场景协同—社区健康医疗小屋的智能升级
大数据·人工智能·物联网·健康医疗