丢弃法-Dropout

动机

好的模型需要对输入数据的扰动鲁棒性

  • 使用有噪音的数据等价于Ti正则
  • 丢弃法: 在层之间加入噪音

无偏差加入噪音

x加入噪音得到x', 希望E[x′]=xE[x']=xE[x′]=x

丢弃法对每个元素进行如下操作
xi′={0with probablity pxi1−p otherise x_i^{'} = \begin{cases} 0 & with \ probablity \ p \\ \frac{x_i}{1-p} & \ otherise \end{cases} xi′={01−pxiwith probablity p otherise

其中xi1−p\frac{x_i}{1-p}1−pxi中1-p代表原始的概率,所以:
E[xi′]=p∗0+(1−p)xi′1−p=xi E[x_i^{'}] = p * 0 + (1-p)\frac{x_i^{'}}{1-p} \\ = x_i E[xi′]=p∗0+(1−p)1−pxi′=xi

如何使用丢弃法(Dropout)

丢弃法通常作用在隐藏全连接的输出上
h=σ(W1x+b1)h′=dropout(h)o=W2h′+b2y=softmax(o) h = \sigma(W_1x+b_1) \\ h' = dropout(h) \\ o = W_2h^{'} + b_2 \\ y = softmax(o) h=σ(W1x+b1)h′=dropout(h)o=W2h′+b2y=softmax(o)

其中hhh是第一个隐藏层的结果
原始的网络结构

(模拟)加入Dropout的网路结构

其中红色标记的位置是被随机为0的单元

丢弃法的作用范围

丢弃法只在训练中使用,添加正则项, 只影响参数的更新
推理过程中丢弃法
h=dropout(h)h = dropout(h)h=dropout(h)

输出的结果等于输入的结果

相关推荐
数据智研11 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
likuolei11 小时前
Spring AI框架完整指南
人工智能·python·spring
梵得儿SHI11 小时前
(第四篇)Spring AI 核心技术攻坚:多轮对话与记忆机制,打造有上下文的 AI
java·人工智能·spring·springai生态·上下文丢失问题·三类记忆·智能客服实战案
二哈喇子!11 小时前
PyTorch生态与昇腾平台适配:环境搭建与详细安装指南
人工智能·pytorch·python
lingzhilab11 小时前
零知ESP32-S3 部署AI小智 2.1,继电器和音量控制以及页面展示音量
人工智能
两万五千个小时11 小时前
AI Agent 框架演进
人工智能
li星野11 小时前
OpenCV4X学习—核心模块Core
人工智能·opencv·学习
刘立军12 小时前
如何选择FAISS的索引类型
人工智能·算法·架构
柠柠酱12 小时前
【深度学习Day5】决战 CIFAR-10:手把手教你搭建第一个“正经”的卷积神经网络 (附调参心法)
深度学习
gravity_w12 小时前
Hugging Face使用指南
人工智能·经验分享·笔记·深度学习·语言模型·nlp