第四章 神经网络的学习

从数据中学习

深度学习有时也称为端到端机器学习

为了正确评价模型的泛化能力 ,就必须划分训练数据和测试数据。另外,训练数据也可以称为监督数据

泛化能力 是指处理未被观察过的数据(不包含在训练数据中的数据)的能力

损失函数是表示神经网络性能的"恶劣程度"的指标,即当前的神经网络对监督数据在多大程度上不拟合,在多大程度上不一致。

损失函数

均方误差

python 复制代码
def mean_squared_error(y, t):
    return 0.5 * np.sum((y-t)**2)

均方误差会计算神经网络的输出和正确解监督数据的各个元素之差 的平方,再求总和,由所有标签的输出结果决定

交叉熵误差

交叉熵误差的值是由正确解标签所对应的输出结果决定的。

python 复制代码
def cross_entropy_error(y, t):
    delta = 1e-7
    return -np.sum(t * np.log(y + delta))

在进行神经网络的学习时,不能将识别精度作为指标。因为如果以识别精度为指标,则参数的导数在绝大多数地方都会变为0。

识别精度对微小的参数变化基本上没有什么反应,即便有反应,它的值也是不连续地、突然地变化。

因此引入损失函数

利用数值微分求导得到损失函数关于权重参数的梯度

利用微小的差分求导数的过程称为数值微分。

全部变量的偏导数汇总而成的向量称为梯度

重要性质:梯度指示的方向是各点处的函数值减小最多的方向

学习率决定在一次学习中,应该学习多少,以及在多大程度上更新参数

像学习率这样的参数称为超参数。这是一种和神经网络的参数(权重和偏置)性质不同的参数。

神经网络中,参数由算法训练获得而超参数则由人工设定

随机梯度下降(SGD)

过拟合是指,虽然训练数据中的数字图像能被正确辨别,但是不在训练数据中的数字图像却无法被识别的现象。

一个epoch 表示学习中所有训练数据均被使用过一次时的更新次数

总结

神经网络用训练数据进行学习,并用测试数据评价学习到的模型的泛化能力

神经网络的学习以损失函数为指标更新权重参数,以使损失函数的值减小。

相关推荐
Coinsheep几秒前
SSTI-flask靶场搭建及通关
python·flask·ssti
IT实战课堂小元酱1 分钟前
大数据深度学习|计算机毕设项目|计算机毕设答辩|flask露天矿爆破效果分析系统开发及应用
人工智能·python·flask
码农阿豪2 分钟前
Flask应用上下文问题解析与解决方案:从错误日志到完美修复
后端·python·flask
wqq63108554 分钟前
Python基于Vue的实验室管理系统 django flask pycharm
vue.js·python·django
Q_Q19632884756 分钟前
python大学生爱心校园互助代购网站_nyvlx_django Flask vue pycharm项目
python·django·flask
码农阿豪9 分钟前
Python Flask应用中文件处理与异常处理的实践指南
开发语言·python·flask
xcLeigh9 分钟前
Python 项目实战:用 Flask 实现 MySQL 数据库增删改查 API
数据库·python·mysql·flask·教程·python3
威迪斯特10 分钟前
Flask:轻量级Web框架的技术本质与工程实践
前端·数据库·后端·python·flask·开发框架·核心架构
独好紫罗兰30 分钟前
对python的再认识-基于数据结构进行-a003-列表-排序
开发语言·数据结构·python
AIFarmer37 分钟前
在EV3上运行Python语言——无线编程
python·ev3