GC Overhead 的排查

最近线上服务出现了一个**"假死"状态的问题。服务没有崩溃,但响应变得极其缓慢,甚至部分任务长时间无响应**。问题没有明显的错误提示

时间:2025-09-09 18:42:06

服务接口:/schedule/carRangeGatherAlarm

耗时:126秒

报错堆栈中核心异常如下:

bash 复制代码
Caused by: java.lang.OutOfMemoryError: GC overhead limit exceeded

一开始我以为是数据库问题。但堆栈中 SQL 执行语句并不复杂,关键在于:

  • GC Overhead 被触发
  • 整个 carRangeGatherAlarm 方法耗时超过 2 分钟
  • 日志中无明显 SQL 超时或连接异常

源码分析:业务逻辑是否"无辜"?

我们来看一下这个定时任务的主干逻辑(已简化):

ini 复制代码
ini
 体验AI代码助手
 代码解读
复制代码
List<CarStayHistoryForTask> stayHistoryList = carStayHistoryDao.selectAlarmByRangeGather();

for (CarStayHistoryForTask cshTask: stayHistoryList) {
    Long stayEndTime = cshTask.getStayEndTime();
    if (stayEndTime == null) {
        stayEndTime = System.currentTimeMillis();
    }

    List<CarStayHistory> stayHistoryOtherList = carStayHistoryDao.selectAlarmByRangeGatherOther(...);

    // 逻辑判断、地理位置计算、去重、告警处理
    ...
}

看似没问题,但问题的关键在于:

  • 嵌套调用数据库 :每一个 stayHistoryList 里的记录,都要再查一次数据库。
  • 极端情况下,stayHistoryList 的数量可能是成百上千。
  • 每次都要从数据库加载大量历史停留记录,再做复杂的地理计算。

这就导致了:内存迅速膨胀,大量对象无法释放,最终触发 GC overhead limit exceeded。


🧠 什么是 GC Overhead Limit Exceeded?

这是 JVM 的一种"自我保护机制",意思是:

"我(JVM)已经花了 98% 的时间在 GC 上,但回收不到 2% 的堆内存,你让我怎么办?"

也就是说,堆内存已经快炸了,JVM 不得不频繁 GC,但就是没法释放空间。这种情况下一般表现为:

  • CPU 飙升
  • 响应缓慢甚至无响应
  • 没有明确报错,但服务"假死"

🔍 深挖背后原因

1. selectAlarmByRangeGather 查询量过大

这个方法一次性查出所有满足条件的驻车数据,如果数据量大,内存直接爆炸。

2. selectAlarmByRangeGatherOther 是 N+1 查询

每个 cshTask 都要再查一次附近的车辆记录,数据库压力大,JVM 压力更大。

3. 地理位置判断代码 耗 CPU

还要判断每辆车是否在某个范围内(圆形区域),涉及数学计算,非常耗时。

4. 没有分页、没有懒加载

数据全部一次性加载到内存,GC 无法跟上,自然就 OOM 了。

如何解决?

✅ 1. 限制处理数据量

selectAlarmByRangeGather 增加分页限制,比如每次处理 100 条数据。

sql 复制代码
sql
 体验AI代码助手
 代码解读
复制代码
SELECT * FROM car_stay_history WHERE ... LIMIT 100

✅ 2. 使用流式处理(Stream / 游标)

减少一次性加载到内存的数据量,配合 MyBatis 的 ResultHandler 或者 Spring Batch。

✅ 3. 避免 N+1 查询

预加载其他车辆数据,或将逻辑合并为一个大 SQL。

✅ 4. JVM 参数优化

调高堆内存、调整 GC 策略(如 G1GC),避免频繁 Full GC。

ruby 复制代码
ruby
 体验AI代码助手
 代码解读
复制代码
-Xms512m -Xmx2048m -XX:+UseG1GC

最终效果

优化后:

  • 单次 carRangeGatherAlarm 执行时间从 2 分钟降到 5 秒
  • CPU 占用稳定在 30% 以下
  • 再无 GC overhead 异常

总结

这次"假死"问题给了我几个深刻的启示:

  1. 代码看起来没错,不等于没坑

  2. 线上问题往往不是 crash,而是性能陷阱

  3. 定时任务和批处理逻辑,最容易被忽略

  4. GC overhead 是 JVM 向你发出的最后求救信号

相关推荐
cj6341181504 小时前
【MySQL】mysqldump使用方法
java·后端
JIngJaneIL4 小时前
停车场管理|停车预约管理|基于Springboot的停车场管理系统设计与实现(源码+数据库+文档)
java·数据库·spring boot·后端·论文·毕设·停车场管理系统
雪域迷影4 小时前
Go语言中通过get请求获取api.open-meteo.com网站的天气数据
开发语言·后端·http·golang·get
于小汐在咯7 小时前
深入浅出:增强现实(AR)技术全解析
后端·ar·restful
爱上妖精的尾巴8 小时前
5-27 WPS JS宏数组元素添加删除应用2
后端·restful·wps·js宏
努力的小郑8 小时前
与产品经理的“模糊”对决:Elasticsearch实现MySQL LIKE '%xxx%' 的奇幻之旅
后端·elasticsearch·搜索引擎
一 乐8 小时前
物业管理系统|小区物业管理|基于SprinBoot+vue的小区物业管理系统(源码+数据库+文档)
java·前端·数据库·vue.js·spring boot·后端
稚辉君.MCA_P8_Java8 小时前
RocketMQ 是什么?它的架构是怎么样的?和 Kafka 又有什么区别?
后端·架构·kafka·kubernetes·rocketmq
yolo_Yang9 小时前
【Spring Boot】Spring Boot解决循环依赖
java·spring boot·后端
wdfk_prog9 小时前
结合QBoot与HPatchLite实现高效差分升级(FOTA)
java·后端·struts