GRU(门控循环单元) 笔记

文章目录

  • 1.什么是GRU
  • 2.GRU的内部结构
    • [2.1 重置门(Reset Gate)](#2.1 重置门(Reset Gate))
    • [2.2 更新门(Update Gate)](#2.2 更新门(Update Gate))
    • [2.3 候选隐状态](#2.3 候选隐状态)
    • [2.4 隐状态](#2.4 隐状态)
  • 代码

1.什么是GRU

GRU(Gate Recurrent Unit)是循环神经网络(RNN)的一种,可以解决RNN中不能长期记忆和反向传播中的梯度等问题,与LSTM的作用类似,不过比LSTM简单,容易进行训练。


先不看内部具体的复杂关系,将上图简化为下图:

结合xt 和 h(t-1),GRU会得到当前隐藏节点的输出y_{t}和传递给下一个节点的隐藏状态ht,这个ht的推导是GRU的关键所在,我们看一下GRU所用到的公式:

2.GRU的内部结构

2.1 重置门(Reset Gate)

r是重置门,重置门决定了如何将新的输入信息与前面的记忆相结合,它控制过去的信息是否重要。如果旧的信息很重要,就保留;如果不重要,就忽略。这有点像在"刷脑子",看哪些旧记忆还需要用,哪些可以被新内容覆盖。

2.2 更新门(Update Gate)

它决定哪些信息需要更新,哪些不需要更新。你可以理解成一个选择器,判断"哪些新知识值得记进脑子里"。

2.3 候选隐状态


2.4 隐状态

zt越接近1,代表"记忆"下来的数据越多;而越接近0则代表"遗忘"的越多。

代码

python 复制代码
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)
相关推荐
Hundred billion24 分钟前
深度学习基本原理和流程
人工智能·深度学习
哥布林学者41 分钟前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (二)残差网络
深度学习·ai
自不量力的A同学1 小时前
OpenNJet v3.3.1.3
笔记
裤裤兔1 小时前
医学影像深度学习知识点总结
人工智能·深度学习·机器学习·医学影像·医学图像
charlie1145141912 小时前
如何快速在 VS2026 上使用 C++ 模块 — 完整上手指南
开发语言·c++·笔记·学习·现代c++
可信计算3 小时前
【算法随想】一种基于“视觉表征图”拓扑变化的NLP序列预测新范式
人工智能·笔记·python·算法·自然语言处理
历程里程碑3 小时前
C++ 9 stack_queue:数据结构的核心奥秘
java·开发语言·数据结构·c++·windows·笔记·算法
m0_626535203 小时前
some 知识点 knowledge
深度学习
Coding茶水间5 小时前
基于深度学习的肾结石检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Narrastory6 小时前
解剖注意力:从零构建Transformer的终极指南
深度学习