基于K近邻(KNN)算法的高光谱数据分类MATLAB实现

一、核心代码

1. 数据预处理
matlab 复制代码
% 加载Indian Pines数据集
load('Indian_pines_corrected.mat'); % 光谱数据
load('Indian_pines_gt.mat');      % 标签数据

% 数据标准化(Z-score)
X = zscore(reshape(data, [], size(data,3)));
Y = reshape(label, [], 1);

% 划分训练集/测试集
cv = cvpartition(Y,'HoldOut',0.3);
X_train = X(cv.training,:);
Y_train = Y(cv.training,:);
X_test = X(cv.test,:);
Y_test = Y(cv.test,:);
2. 特征降维(PCA)
matlab 复制代码
% 主成分分析
[coeff,score,~] = pca(X_train);
explained = 100*sum(coeff.^2)/size(X_train,2);
cum_explained = cumsum(explained);

% 选择前10个主成分
k = find(cum_explained >= 95, 1);
X_train_pca = score(:,1:k);
X_test_pca = coeff(:,1:k)' * (X_test' - mean(X_train))';
3. KNN分类实现
matlab 复制代码
% 参数设置
k_values = 1:5:20;
best_acc = 0;

for k = k_values
    % 构建KNN模型
    mdl = fitcknn(X_train_pca, Y_train, 'NumNeighbors', k, 'Distance', 'mahalanobis', 'Standardize', false);
    
    % 预测
    Y_pred = predict(mdl, X_test_pca);
    
    % 计算准确率
    acc = sum(Y_pred == Y_test)/numel(Y_test);
    if acc > best_acc
        best_k = k;
        best_acc = acc;
    end
end

disp(['最佳K值: ', num2str(best_k), ' 准确率: ', num2str(best_acc*100), '%']);

二、关键优化

1. 距离度量优化
matlab 复制代码
% 光谱角度匹配距离(SAM)
function d = spectral_angle(X,Y)
    numerator = sum(X.*Y, 2);
    denominator = sqrt(sum(X.^2,2)) * sqrt(sum(Y.^2,2));
    d = acos(numerator ./ denominator);
end

% 在KNN中应用自定义距离
mdl = fitcknn(X_train_pca, Y_train, 'NumNeighbors', 5, 'Distance', @spectral_angle);
2. 空间上下文融合
matlab 复制代码
% 加载空间坐标
load('Indian_pines_spatial.mat'); % 包含X,Y坐标

% 构建空间邻接矩阵
pos = [X_spatial, Y_spatial];
A = zeros(size(pos,1));
for i = 1:size(pos,1)
    dist = sqrt(sum((pos - pos(i,:)).^2,2));
    [~,idx] = mink(dist, 6);
    A(i,idx) = 1;
end

% 空间约束KNN
mdl = fitcknn([X_train_pca, A], Y_train, 'NumNeighbors', 5);

三、工程优化

1. GPU加速实现
matlab 复制代码
% 将数据转换为GPU数组
X_train_gpu = gpuArray(X_train_pca);
X_test_gpu = gpuArray(X_test_pca);

% 使用并行计算工具箱
mdl = fitcknn(X_train_gpu, Y_train, 'NumNeighbors', 5);
Y_pred_gpu = predict(mdl, X_test_gpu);
2. 分块处理策略
matlab 复制代码
% 分块处理大尺寸图像
block_size = 256;
[height,width] = size(data(:,:,1));
num_blocks = ceil(height/block_size) * ceil(width/block_size);

for i = 1:block_size:height
    for j = 1:block_size:width
        block = data(i:min(i+block_size-1,height), j:min(j+block_size-1,width), :);
        % 处理每个分块...
    end
end

四、典型应用案例

1. 农作物监测(PaviaU数据集)
matlab 复制代码
% 加载数据
load('PaviaU.mat');
load('PaviaU_gt.mat');

% 构建3D特征立方体
X = double(reshape(data, [], size(data,3)));
Y = double(reshape(gt, [], 1));

% 分类结果可视化
figure;
imagesc(label2rgb(Y));
title('真实分类图');
2. 矿产勘探(Hyperion数据)
matlab 复制代码
% 异常检测
mdl = fitcknn(X_train, Y_train, 'NumNeighbors', 3);
Y_pred = predict(mdl, X_test);

% 矿产富集区标记
anomaly_mask = Y_pred == 4; % 假设类别4为矿产

参考代码 高光谱数据进行KNN分类 www.youwenfan.com/contentcsi/65275.html

五、常见问题解决方案

1. 维数灾难处理
  • 采用核Fisher判别分析(KFDA)替代PCA
  • 使用流形学习(Isomap/LLE)
2. 类别不平衡
matlab 复制代码
% 加权KNN
mdl = fitcknn(X_train, Y_train, 'NumNeighbors', 5, 'Weights', 'classiferror');
3. 实时性提升
  • 使用KD树加速最近邻搜索
  • 采用近似最近邻算法(ANN)

六、扩展应用

  1. 多光谱视频分析
matlab 复制代码
% 视频帧间关联
prev_frame = process_frame(prev_img);
current_frame = process_frame(curr_img);
assoc = knn_associate(prev_frame, current_frame);
  1. 深度学习融合
matlab 复制代码
% 特征提取网络
net = alexnet;
features = activations(net, img, 'fc7', 'OutputAs', 'rows');

% 混合分类器
final_pred = majority_vote([knn_pred, cnn_pred]);
相关推荐
Craaaayon3 小时前
【数据结构】二叉树-图解广度优先搜索
java·数据结构·后端·算法·宽度优先
DuHz3 小时前
汽车角雷达波形设计与速度模糊解决方法研究——论文阅读
论文阅读·物联网·算法·汽车·信息与通信·信号处理
学习编程的Kitty4 小时前
算法——位运算
java·前端·算法
ezl1fe4 小时前
RAG 每日一技(十九):当文本遇上表格,如何拿下“半结构化”PDF
人工智能·后端·算法
刘某某.4 小时前
数组和小于等于k的最长子数组长度b
java·数据结构·算法
大千AI助手4 小时前
Viterbi解码算法:从理论到实践
算法·动态规划·hmm·隐马尔可夫·viterbi解码·viterbi·卷积码
chenyuhao20245 小时前
《C++二叉引擎:STL风格搜索树实现与算法优化》
开发语言·数据结构·c++·后端·算法
金融街小单纯5 小时前
随机刺激训练:解锁跨学科洞察力的科学密码
算法·重构·区块链
要争气5 小时前
5 二分查找算法应用
java·数据结构·算法