PyTorch 实现 MNIST 手写数字识别全流程

一、引言

MNIST 数据集是机器学习领域的 "Hello World",包含大量手写数字图片及对应标签。本文将使用 PyTorch 框架,从数据准备、模型构建到训练与可视化,完整实现 MNIST 手写数字识别任务,帮助初学者快速上手深度学习图像分类。

二、环境准备与库导入

首先导入所需的库,包括 NumPy 用于数值计算,PyTorch 相关模块用于构建模型、处理数据,以及 Matplotlib 用于可视化。

python

运行

复制代码
import numpy as np
import torch
from torchvision.datasets import mnist
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
%matplotlib inline

三、数据准备

(一)超参数定义

设置批次大小、学习率和训练轮数等超参数,这些参数会影响模型的训练过程和结果。

python

运行

复制代码
train_batch_size = 64
test_batch_size = 128
learning_rate = 0.01
num_epoches = 20

(二)数据预处理

使用 transforms 对数据进行预处理,将图像转为张量并标准化,使模型训练更稳定。然后通过 DataLoader 加载数据集,实现数据的批量读取和打乱。

python

运行

复制代码
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])

train_dataset = mnist.MNIST('../data/', train=True, transform=transform, download=True)
test_dataset = mnist.MNIST('../data/', train=False, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)

(三)数据可视化

为了直观了解数据,从测试集中取出部分数据进行可视化展示,查看手写数字的真实样子和标签。

python

运行

复制代码
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)

fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])

四、模型构建

定义一个基于 nn.Module 的神经网络类 Net,使用 Sequential 组合网络层,包括展平层、带批量归一化的线性层和激活函数等,最后通过 softmax 输出分类概率。

python

运行

复制代码
class Net(nn.Module):
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(Net, self).__init__()
        self.flatten = nn.Flatten()
        self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2))
        self.out = nn.Sequential(nn.Linear(n_hidden_2, out_dim))

    def forward(self, x):
        x = self.flatten(x)
        x = F.relu(self.layer1(x))
        x = F.relu(self.layer2(x))
        x = F.softmax(self.out(x), dim=1)
        return x

五、模型训练与评估

(一)实例化模型与设置优化器

选择运行设备(GPU 或 CPU),实例化模型并移至对应设备,定义损失函数和优化器,这里使用交叉熵损失和 SGD 优化器。

python

运行

复制代码
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Net(28 * 28, 300, 100, 10)
model.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)

(二)训练循环

在多个 epoch 中训练模型,每个 epoch 包括训练阶段和测试阶段。训练时计算损失并反向传播更新参数,测试时评估模型在测试集上的性能,同时记录损失和准确率用于后续可视化。

python

运行

复制代码
losses = []
acces = []
eval_losses = []
eval_acces = []
writer = SummaryWriter(log_dir='logs', comment='train-loss')

for epoch in range(num_epoches):
    train_loss = 0
    train_acc = 0
    model.train()
    if epoch % 5 == 0:
        optimizer.param_groups[0]['lr'] *= 0.9
    print('学习率:{:.6f}'.format(optimizer.param_groups[0]['lr']))
    for img, label in train_loader:
        img = img.to(device)
        label = label.to(device)
        out = model(img)
        loss = criterion(out, label)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss += loss.item()
        writer.add_scalar('Train', train_loss / len(train_loader), epoch)
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        train_acc += acc

    losses.append(train_loss / len(train_loader))
    acces.append(train_acc / len(train_loader))
    eval_loss = 0
    eval_acc = 0
    model.eval()
    for img, label in test_loader:
        img = img.to(device)
        label = label.to(device)
        img = img.view(img.size(0), -1)
        out = model(img)
        loss = criterion(out, label)
        eval_loss += loss.item()
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        eval_acc += acc

    eval_losses.append(eval_loss / len(test_loader))
    eval_acces.append(eval_acc / len(test_loader))
    print('epoch: {}, Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'
          .format(epoch, train_loss / len(train_loader), train_acc / len(train_loader),
                  eval_loss / len(test_loader), eval_acc / len(test_loader)))

(三)损失可视化

训练完成后,绘制训练损失曲线,直观观察模型训练过程中损失的变化情况。

python

运行

复制代码
plt.title('train loss')
plt.plot(np.arange(len(losses)), losses)
plt.legend(['Train Loss'], loc='upper right')

六、总结

本文详细介绍了使用 PyTorch 实现 MNIST 手写数字识别的全流程,包括数据准备、模型构建、训练评估与可视化。通过这个经典任务,能帮助初学者熟悉深度学习图像分类的基本步骤和 PyTorch 的使用方法。在实际应用中,还可进一步优化模型结构、调整超参数或使用数据增强等方法提升模型性能。

相关推荐
传说故事19 分钟前
【论文自动阅读】视频生成模型的Inference-time物理对齐 with Latent World Model
人工智能·深度学习·音视频·视频生成
薛定谔的猫19821 小时前
二十、使用PyTorch和Hugging Face Transformers训练中文GPT-2模型的技术实践
人工智能·pytorch·gpt
cyyt1 小时前
深度学习周报(1.26~2.1)
人工智能·深度学习
shangjian0071 小时前
AI-大语言模型LLM-模型微调8-进阶操作
人工智能·深度学习·语言模型
明明真系叻1 小时前
2026.2.1周报
深度学习·量子计算
机器学习之心2 小时前
金融时间序列预测全流程框架:从SHAP特征选择到智能算法优化深度学习预测模型,核心三章实验已完成,尚未发表,期待有缘人!
人工智能·深度学习·金融
渡我白衣2 小时前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
【赫兹威客】浩哥2 小时前
交通违章识别数据集与YOLO系列模型训练成果
人工智能·深度学习·机器学习
Yeats_Liao2 小时前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
听麟2 小时前
HarmonyOS 6.0+ PC端智能监控助手开发实战:摄像头联动与异常行为识别落地
人工智能·深度学习·华为·harmonyos