李宏毅机器学习笔记21

目录

摘要

Abstract

1.Transformer基本概念

2.Encoder


摘要

本篇文章继续学习李宏毅老师2025春季机器学习课程,学习内容是Transformer的基本概念以及Transformer中encoder的基本架构。

Abstract

This article continues the study of Prof. Hung-yi Lee's 2025 Spring Machine Learning Course , focusing on the fundamental concepts of the Transformer and the basic architecture of its encoder.

1.Transformer基本概念

transformer实际上就是我们之前提到过的sequence to sequence的model,即输入一个句子输出一个句子,输入和输出的长度不固定,例如下图的语音识别,句子翻译,语音翻译等。

sequence to sequence的基本架构如下图,需要一个encoder处理输入,一个decoder处理输出。

实际上与Transformer的架构相似,Transformer的架构如下图

2.Encoder

encoder实际上要做的事情就是给一排向量输出另一排向量。

在encoder中会分成很多的block,输入一排向量给第一个block,第一个block输出给第二个block作为输入一直到最后一个block输出最终的向量。在transformer中一个block做的事情就是,先做一个self-attention考虑整个句子的资讯,输出另一排向量,再丢到fully connected的network中输出。

在原来的transformer中做的事情是更复杂的,在self-attention中加入了一个设计叫做residual connection,即输入self-attention的向量假设为b,输出的向量假设为a,在经过self-attention后将输入与输出合并起来,即a+b作为新的输出。

在得到residual的结果后进行normalization,用到的是layer normalization,它比batch normalization更简单,layer normalization就是输入一个向量输出一个向量,它计算输入向量均值和标准差,用向量中的每个数值减去均值后除标准差,最后得出的结果才是fully connected的输入。

在fully connected中同样也需要用residual,在得到residual的结果后也需要进行normalization。最后的输出才是block的输出。

transformer总体的encoder流程如下图右侧部分,输入可能还需要加入位置讯息(positional encoding),经过N个block输出最后的结果。

相关推荐
!!!!!!!!!!!!!!!!.1 小时前
CTF WEB入门 命令执行篇29-49
笔记·安全
武子康1 小时前
AI研究-118 具身智能 Mobile-ALOHA 解读:移动+双臂模仿学习的开源方案(含论文/代码/套件链接)
人工智能·深度学习·学习·机器学习·ai·开源·模仿学习
长桥夜波1 小时前
机器学习日报12
人工智能·机器学习
AI柠檬1 小时前
机器学习:数据集的划分
人工智能·算法·机器学习
诸葛务农1 小时前
光刻胶分类与特性——g/i线光刻胶及东京应化TP-3000系列胶典型配方(上)
人工智能·材料工程
mm-q29152227291 小时前
YOLOv5(PyTorch)目标检测实战:TensorRT加速部署!训练自己的数据集(Ubuntu)——(人工智能、深度学习、机器学习、神经网络)
人工智能·深度学习·机器学习
搞科研的小刘选手2 小时前
【多所高校合作】第四届图像处理、计算机视觉与机器学习国际学术会议(ICICML 2025)
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·人脸识别·人机交互
FreeCode2 小时前
LangChain1.0智能体开发:消息组件(Messages)
人工智能·langchain·agent
视觉AI2 小时前
为什么 transformers 要 import TensorFlow
人工智能·tensorflow·neo4j
bnsarocket2 小时前
Verilog和FPGA的自学笔记8——按键消抖与模块化设计
笔记·fpga开发·verilog·自学·硬件编程