李宏毅机器学习笔记21

目录

摘要

Abstract

1.Transformer基本概念

2.Encoder


摘要

本篇文章继续学习李宏毅老师2025春季机器学习课程,学习内容是Transformer的基本概念以及Transformer中encoder的基本架构。

Abstract

This article continues the study of Prof. Hung-yi Lee's 2025 Spring Machine Learning Course , focusing on the fundamental concepts of the Transformer and the basic architecture of its encoder.

1.Transformer基本概念

transformer实际上就是我们之前提到过的sequence to sequence的model,即输入一个句子输出一个句子,输入和输出的长度不固定,例如下图的语音识别,句子翻译,语音翻译等。

sequence to sequence的基本架构如下图,需要一个encoder处理输入,一个decoder处理输出。

实际上与Transformer的架构相似,Transformer的架构如下图

2.Encoder

encoder实际上要做的事情就是给一排向量输出另一排向量。

在encoder中会分成很多的block,输入一排向量给第一个block,第一个block输出给第二个block作为输入一直到最后一个block输出最终的向量。在transformer中一个block做的事情就是,先做一个self-attention考虑整个句子的资讯,输出另一排向量,再丢到fully connected的network中输出。

在原来的transformer中做的事情是更复杂的,在self-attention中加入了一个设计叫做residual connection,即输入self-attention的向量假设为b,输出的向量假设为a,在经过self-attention后将输入与输出合并起来,即a+b作为新的输出。

在得到residual的结果后进行normalization,用到的是layer normalization,它比batch normalization更简单,layer normalization就是输入一个向量输出一个向量,它计算输入向量均值和标准差,用向量中的每个数值减去均值后除标准差,最后得出的结果才是fully connected的输入。

在fully connected中同样也需要用residual,在得到residual的结果后也需要进行normalization。最后的输出才是block的输出。

transformer总体的encoder流程如下图右侧部分,输入可能还需要加入位置讯息(positional encoding),经过N个block输出最后的结果。

相关推荐
人工智能训练6 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海6 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
不会代码的小猴7 小时前
Linux环境编程第六天笔记--system-V IPC
linux·笔记
DisonTangor8 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
乌恩大侠8 小时前
【笔记】USRP 5G 和 6G 参考架构
笔记·5g
薛定谔的猫19828 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了8 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
biuyyyxxx8 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
数智联AI团队8 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒8 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习