cv_bridge和openCV不兼容问题

1. cv_bridge不兼容问题

问题:NumPy 升级到 2.0+ 后与 ROS Noetic 的 cv_bridge 模块不兼容,但我又必须在conda环境下运行

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.

If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2.

解决:不用ros noetic的cv_bridge,自己编译cv_bridge与conda环境的NumPy兼容

1)激活 Conda 环境

bash 复制代码
conda activate env_xxx
bash 复制代码
mkdir /cv_ws/src
cd ~/cv_ws/src
git clone https://github.com/ros-perception/vision_opencv.git
cd vision_opencv
git checkout noetic

确认 Python 和 NumPy 都是 Conda 的:

bash 复制代码
which python
python -c "import numpy; print(numpy.__version__)"

2)安装必要依赖

bash 复制代码
sudo apt install python3-dev python3-numpy
sudo apt install ros-noetic-cv-bridge ros-noetic-vision-opencv

3)克隆源码

bash 复制代码
mkdir -p /cv_ws/src
cd ~/cv_ws/src
git clone https://github.com/ros-perception/vision_opencv.git
cd vision_opencv
git checkout noetic

4)修改编译配置

进入 cv_bridge 目录:

bash 复制代码
cd cv_bridge

修改CMakeLists.txt(~/cv_ws/src/vision_opencv/cv_bridge/CMakeLists.txt)

bash 复制代码
cmake_minimum_required(VERSION 3.0.2)
project(cv_bridge)

# 手动指定 Conda Python 环境路径
set(PYTHON_EXECUTABLE "/home/username/miniconda3/envs/CTSAC/bin/python")
set(PYTHON_INCLUDE_DIR "/home/username/miniconda3/envs/CTSAC/include/python3.9")
set(PYTHON_INCLUDE_DIRS "/home/username/miniconda3/envs/CTSAC/include/python3.9")
set(PYTHON_LIBRARY "/home/username/miniconda3/envs/CTSAC/lib/libpython3.9.so")
set(PYTHON_LIBRARIES "/home/username/miniconda3/envs/CTSAC/lib/libpython3.9.so")

# 指定 Boost 的搜索路径到 conda 环境
set(BOOST_ROOT "/home/username/miniconda3/envs/CTSAC")
set(Boost_NO_SYSTEM_PATHS TRUE)
set(Boost_INCLUDE_DIR "${BOOST_ROOT}/include")
set(Boost_LIBRARY_DIR "${BOOST_ROOT}/lib")

find_package(catkin REQUIRED COMPONENTS rosconsole sensor_msgs)

# 强制使用预设的 Python 变量,防止 find_package 覆盖
set(PYTHONLIBS_FOUND TRUE)
set(PythonLibs_FOUND TRUE)
find_package(PythonLibs REQUIRED)

# 再次确保变量设置正确(防止被 find_package 覆盖)
set(PYTHON_LIBRARY "/home/username/miniconda3/envs/CTSAC/lib/libpython3.9.so")
set(PYTHON_LIBRARIES "/home/username/miniconda3/envs/CTSAC/lib/libpython3.9.so")

if(NOT ANDROID)
  find_package(Boost REQUIRED COMPONENTS python)
else()
  find_package(Boost REQUIRED)
endif()

# 尝试找到 OpenCV
set(_opencv_version 4)
find_package(OpenCV 4 QUIET)
if(NOT OpenCV_FOUND)
  message(STATUS "Did not find OpenCV 4, trying OpenCV 3")
  set(_opencv_version 3)
endif()

find_package(OpenCV ${_opencv_version} REQUIRED
  COMPONENTS
    opencv_core
    opencv_imgproc
    opencv_imgcodecs
  CONFIG
)

catkin_package(
  INCLUDE_DIRS include
  LIBRARIES ${PROJECT_NAME}
  CATKIN_DEPENDS rosconsole sensor_msgs
  DEPENDS OpenCV
  CFG_EXTRAS cv_bridge-extras.cmake
)

catkin_python_setup()

include_directories(
  include
  ${Boost_INCLUDE_DIRS}
  ${OpenCV_INCLUDE_DIRS}
  ${catkin_INCLUDE_DIRS}
  ${PYTHON_INCLUDE_DIRS}
)
link_directories(${Boost_LIBRARY_DIRS})

if(NOT ANDROID)
  add_subdirectory(python)
endif()

add_subdirectory(src)

if(CATKIN_ENABLE_TESTING)
  add_subdirectory(test)
endif()

install(
  DIRECTORY include/${PROJECT_NAME}/
  DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
)

修改修改 cv_bridge/src/CMakeLists.txt(~/cv_ws/src/vision_opencv/cv_bridge/src/CMakeLists.txt)

bash 复制代码
# 强制设置 Python 变量(必须在 find_package 之前)
set(PYTHON_EXECUTABLE "/home/username/miniconda3/envs/CTSAC/bin/python")
set(PYTHON_INCLUDE_DIR "/home/username/miniconda3/envs/CTSAC/include/python3.9")
set(PYTHON_INCLUDE_DIRS "/home/username/miniconda3/envs/CTSAC/include/python3.9")
set(PYTHON_INCLUDE_PATH "/home/username/miniconda3/envs/CTSAC/include/python3.9")
set(PYTHON_LIBRARY "/home/username/miniconda3/envs/CTSAC/lib/libpython3.9.so")
set(PYTHON_LIBRARIES "/home/username/miniconda3/envs/CTSAC/lib/libpython3.9.so")
set(PYTHONLIBS_FOUND TRUE)
set(PythonLibs_FOUND TRUE)
set(PYTHON_VERSION_MAJOR 3)
set(PYTHON_VERSION_MINOR 9)

# add library
include_directories(./)
add_library(${PROJECT_NAME} cv_bridge.cpp rgb_colors.cpp)
add_dependencies(${PROJECT_NAME} ${catkin_EXPORTED_TARGETS})
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBRARIES} ${catkin_LIBRARIES})

install(TARGETS ${PROJECT_NAME}
  LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
  ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
  RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
)

if(NOT ANDROID)
# add a Boost Python library
find_package(PythonInterp REQUIRED)
find_package(PythonLibs "${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR}")

# 再次强制设置(防止被 find_package 覆盖)
set(PYTHON_LIBRARY "/home/username/miniconda3/envs/CTSAC/lib/libpython3.9.so")
set(PYTHON_LIBRARIES "/home/username/miniconda3/envs/CTSAC/lib/libpython3.9.so")

#Get the numpy include directory from its python module
if(NOT PYTHON_NUMPY_INCLUDE_DIR)
    execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "import numpy; print(numpy.get_include())"
                    RESULT_VARIABLE PYTHON_NUMPY_PROCESS
                    OUTPUT_VARIABLE PYTHON_NUMPY_INCLUDE_DIR
                    OUTPUT_STRIP_TRAILING_WHITESPACE)

    if(PYTHON_NUMPY_PROCESS EQUAL 0)
       file(TO_CMAKE_PATH "${PYTHON_NUMPY_INCLUDE_DIR}" PYTHON_NUMPY_INCLUDE_CMAKE_PATH)
       set(PYTHON_NUMPY_INCLUDE_DIR ${PYTHON_NUMPY_INCLUDE_CMAKE_PATH} CACHE PATH "Numpy include directory")
    else(PYTHON_NUMPY_PROCESS EQUAL 0)
        message(SEND_ERROR "Could not determine the NumPy include directory, verify that NumPy was installed correctly.")
    endif(PYTHON_NUMPY_PROCESS EQUAL 0)
 endif(NOT PYTHON_NUMPY_INCLUDE_DIR)

include_directories(${PYTHON_INCLUDE_PATH} ${Boost_INCLUDE_DIRS} ${PYTHON_NUMPY_INCLUDE_DIR})

if (PYTHON_VERSION_MAJOR VERSION_EQUAL 3)
  add_definitions(-DPYTHON3)
endif()

add_library(${PROJECT_NAME}_boost module.cpp module_opencv4.cpp)
target_link_libraries(${PROJECT_NAME}_boost ${Boost_LIBRARIES}
                                            ${catkin_LIBRARIES}
                                            ${PROJECT_NAME}
)

if(NOT APPLE)
  target_link_libraries(${PROJECT_NAME}_boost ${PYTHON_LIBRARIES})
endif()

set_target_properties(${PROJECT_NAME}_boost PROPERTIES
                      LIBRARY_OUTPUT_DIRECTORY ${CATKIN_DEVEL_PREFIX}/${CATKIN_GLOBAL_PYTHON_DESTINATION}/${PROJECT_NAME}/boost/
                      RUNTIME_OUTPUT_DIRECTORY ${CATKIN_DEVEL_PREFIX}/${CATKIN_GLOBAL_PYTHON_DESTINATION}/${PROJECT_NAME}/boost/
                      PREFIX ""
)
if(APPLE)
  set_target_properties(${PROJECT_NAME}_boost PROPERTIES
                        SUFFIX ".so")
  set_target_properties(${PROJECT_NAME}_boost PROPERTIES
                        LINK_FLAGS "-undefined dynamic_lookup")
endif()
if(MSVC)
  set_target_properties(${PROJECT_NAME}_boost PROPERTIES
                        SUFFIX ".pyd")
endif()

install(TARGETS ${PROJECT_NAME}_boost DESTINATION ${CATKIN_PACKAGE_PYTHON_DESTINATION}/boost/)
endif()

5)编译

bash 复制代码
cd ~/cv_ws
rm -rf build devel
catkin_make
# 或者
catkin_make -DPYTHON_EXECUTABLE=/home/username/miniconda3/envs/CTSAC/bin/python

6)source工作空间

bash 复制代码
source ~/cv_ws/devel/setup.bash
python -c "from cv_bridge import CvBridge; print('cv_bridge OK')"

7)cv_ws的工作空间也要source,而scout_ws工作空间也要source

方法一:把编译顺序写入.bashrc文件

bash 复制代码
nano ~/.bashrc
source /opt/ros/noetic/setup.bash
source ~/scout_ws/devel/setup.bash
source ~/cv_ws/devel/setup.bash


# 保存后
source ~/.bashrc

方法二:合并工作空间

如果cv_bridge只是给scout_ws用的,可以直接把cv_bridge的源码放到scout_ws:

bash 复制代码
cp -r ~/cv_ws/src/vision_opencv ~/scout_ws/src/
cd ~/scout_ws
catkin_make

这样只需要一个工作空间。

8)编译成功后验证方法

bash 复制代码
python -c "import cv_bridge; print('cv_bridge OK')"
相关推荐
king王一帅30 分钟前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技3 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102165 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧5 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)5 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了5 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好5 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能6 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案6 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
AC赳赳老秦6 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek