CANN组织链接 :https://atomgit.com/cann
ops-transformer仓库链接:https://atomgit.com/cann/ops-transformer
文章导读
本文将手把手指导读者如何在ops-transformer框架下从零开始开发一个自定义算子。通过一个完整的实战案例------开发FusedRMSNormRoPE算子,我们将覆盖算子开发的全流程,包括需求分析、算法设计、代码实现、测试验证和性能优化。无论你是CANN新手还是有一定经验的开发者,都能从本文获得实用的开发技巧和最佳实践。
CANN:为AI加速而生
CANN(Compute Architecture for Neural Networks)是华为昇腾异构计算架构的核心软件栈,为AI应用提供了从底层硬件到上层框架的完整支持。CANN的设计目标是充分释放昇腾AI处理器的算力,为深度学习训练和推理提供极致性能。
CANN的核心优势包括:
- 高度优化的算子库:包含数百个深度学习算子,针对昇腾硬件深度优化
- 灵活的编程模型:支持TBE、AiCore C++等多种编程方式
- 完善的工具链:从编译器、调试器到性能分析器一应俱全
- 广泛的框架支持:与TensorFlow、PyTorch、MindSpore等主流框架无缝集成
- 开放的生态:开发者可以自由扩展和定制算子
ops-transformer:大模型算子的专家
ops-transformer是CANN算子库中专门为Transformer架构优化的子库,聚焦于大语言模型(LLM)的关键计算模式。随着GPT、LLaMA、ChatGLM等大模型的普及,Transformer已成为AI领域的主导架构。然而,Transformer的计算特点------注意力机制的二次复杂度、大规模矩阵运算、复杂的融合模式------对算子性能提出了极高要求。
ops-transformer提供了:
- attention类算子:FlashAttention、Sparse Attention、Multi-query Attention等
- moe类算子:专家路由、Token分发、负载均衡等
- 位置编码算子:RoPE、ALiBi、相对位置编码等
- 融合算子:将多个操作融合为单个Kernel,减少内存访问
- 通信计算融合:为分布式训练优化
本文将基于ops-transformer的框架和规范,开发一个实用的融合算子,展示完整的开发流程。
一、需求分析与算子设计
1.1 背景:为什么需要FusedRMSNormRoPE?
在LLaMA等现代大模型中,常见的计算模式是:
- 对输入进行RMSNorm归一化
- 通过线性变换得到Q、K
- 对Q、K应用RoPE(Rotary Position Embedding)位置编码
标准实现的问题:
python
# 标准PyTorch实现
hidden_states = rms_norm(input) # Step 1: RMSNorm
q, k = linear_qk(hidden_states).chunk(2) # Step 2: 线性变换
q = apply_rope(q, position_ids) # Step 3: 应用RoPE到Q
k = apply_rope(k, position_ids) # Step 4: 应用RoPE到K
这个流程需要4次Kernel调用,每次都要:
- 从HBM读取数据
- 执行计算
- 将结果写回HBM
对于序列长度N=2048、hidden_size=4096的场景,仅数据搬移就需要:
- RMSNorm:读4096×2048×2字节 + 写4096×2048×2字节 = 32MB读 + 32MB写
- 线性变换:读32MB + 写32MB
- RoPE(2次):读32MB + 写32MB,乘以2
- 总计:128MB读 + 128MB写 = 256MB
融合算子的优势 :
将这些操作融合为单个Kernel:
python
# 融合实现
q, k = fused_rmsnorm_rope(input, weight, position_ids)
只需要:
- 读取input一次(32MB)
- 读取weight和position_ids(很小)
- 写入q和k(32MB)
- 总计:约64MB数据搬移,节省75%!
此外,融合还带来:
- 减少Kernel启动开销
- 提高指令流水线效率
- 更好的缓存局部性
1.2 算子功能规格
算子名称:FusedRMSNormRoPE
输入:
input: [batch_size, seq_len, hidden_size],输入张量weight: [hidden_size],RMSNorm的权重qk_weight: [hidden_size, 2*hidden_size],Q、K的线性变换权重position_ids: [batch_size, seq_len],位置索引cos_table: [max_seq_len, head_dim],RoPE余弦查找表sin_table: [max_seq_len, head_dim],RoPE正弦查找表
输出:
query: [batch_size, seq_len, hidden_size],应用RoPE后的Querykey: [batch_size, seq_len, hidden_size],应用RoPE后的Key
参数:
epsilon: RMSNorm的稳定项,默认1e-6num_heads: 注意力头数head_dim: 每个头的维度
数学定义:
1. RMSNorm:
rms = sqrt(mean(input^2) + epsilon)
normalized = input / rms * weight
2. Linear transformation:
qk = normalized @ qk_weight
q, k = split(qk, dim=-1)
3. RoPE:
q_rotated[..., 2i:2i+2] = rotate(q[..., 2i:2i+2], cos[pos], sin[pos])
k_rotated[..., 2i:2i+2] = rotate(k[..., 2i:2i+2], cos[pos], sin[pos])
其中 rotate(x, cos, sin) = [x[0]*cos - x[1]*sin, x[0]*sin + x[1]*cos]
1.3 性能目标
基准 :分离的实现(4个独立Kernel)
目标:融合实现比基准快2倍以上
测试场景:
- LLaMA-7B:hidden_size=4096, num_heads=32, head_dim=128
- 序列长度:512, 1024, 2048, 4096
- 批大小:1, 2, 4, 8
二、开发环境搭建
2.1 环境准备
硬件要求:
- 昇腾AI处理器(如Atlas 800T A2)
- 或使用CANN Simulator仿真环境
软件要求:
bash
# 1. 安装CANN工具包(版本8.0.RC1或更高)
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/CANN%208.0.RC1/Ascend-cann-toolkit_8.0.RC1_linux-x86_64.run
chmod +x Ascend-cann-toolkit_8.0.RC1_linux-x86_64.run
./Ascend-cann-toolkit_8.0.RC1_linux-x86_64.run --install
# 2. 设置环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 3. 验证安装
npu-smi info # 查看NPU设备信息
2.2 获取ops-transformer源码
bash
# 克隆仓库
git clone https://gitcode.com/cann/ops-transformer.git
cd ops-transformer
# 安装Python依赖
pip install -r requirements.txt
# 安装开发依赖
bash install_deps.sh
2.3 创建算子工程
ops-transformer提供了experimental目录用于自定义算子开发:
bash
cd experimental
# 创建算子目录
mkdir -p custom_ops/fused_rmsnorm_rope
cd custom_ops/fused_rmsnorm_rope
# 创建标准目录结构
mkdir -p op_host op_kernel examples docs
完整的目录结构:
fused_rmsnorm_rope/
├── CMakeLists.txt # 编译配置
├── README.md # 算子说明
├── docs/ # 文档目录
│ └── algorithm.md
├── op_host/ # Host侧代码
│ ├── fused_rmsnorm_rope.cpp # 算子信息库
│ ├── fused_rmsnorm_rope_tiling.h # Tiling头文件
│ └── fused_rmsnorm_rope_tiling.cpp # Tiling实现
├── op_kernel/ # Kernel侧代码
│ ├── fused_rmsnorm_rope.cpp # Kernel入口
│ └── fused_rmsnorm_rope_impl.h # 实现细节
└── examples/ # 示例和测试
├── test_fused_rmsnorm_rope.py # Python测试
└── benchmark.py # 性能测试
三、算子实现
3.1 算子信息库(op_host)
步骤1:定义算子接口(fused_rmsnorm_rope.cpp)
cpp
#include "graph/operator_reg.h"
#include "register/op_impl_registry.h"
namespace ge {
// 算子注册
REG_OP(FusedRMSNormRoPE)
// 输入定义
.INPUT(input, TensorType({DT_FLOAT16, DT_BFLOAT16, DT_FLOAT}))
.INPUT(weight, TensorType({DT_FLOAT16, DT_BFLOAT16, DT_FLOAT}))
.INPUT(qk_weight, TensorType({DT_FLOAT16, DT_BFLOAT16, DT_FLOAT}))
.INPUT(position_ids, TensorType({DT_INT32, DT_INT64}))
.INPUT(cos_table, TensorType({DT_FLOAT16, DT_BFLOAT16, DT_FLOAT}))
.INPUT(sin_table, TensorType({DT_FLOAT16, DT_BFLOAT16, DT_FLOAT}))
// 输出定义
.OUTPUT(query, TensorType({DT_FLOAT16, DT_BFLOAT16, DT_FLOAT}))
.OUTPUT(key, TensorType({DT_FLOAT16, DT_BFLOAT16, DT_FLOAT}))
// 属性定义
.ATTR(epsilon, Float, 1e-6)
.ATTR(num_heads, Int, 32)
.ATTR(head_dim, Int, 128)
.OP_END_FACTORY_REG(FusedRMSNormRoPE)
// 形状推导
IMPLEMT_INFERFUNC(FusedRMSNormRoPE, FusedRMSNormRoPEInfer) {
// 获取输入形状
auto input_shape = op.get_input_desc_input().GetShape();
auto input_dtype = op.get_input_desc_input().GetDataType();
// 验证输入维度
if (input_shape.GetDimNum() != 3) {
OP_LOGE(op.GetName().c_str(), "Input must be 3D tensor [batch, seq_len, hidden_size]");
return GRAPH_FAILED;
}
// 提取维度
int64_t batch_size = input_shape.GetDim(0);
int64_t seq_len = input_shape.GetDim(1);
int64_t hidden_size = input_shape.GetDim(2);
// 验证权重形状
auto qk_weight_shape = op.get_input_desc_qk_weight().GetShape();
if (qk_weight_shape.GetDim(0) != hidden_size ||
qk_weight_shape.GetDim(1) != 2 * hidden_size) {
OP_LOGE(op.GetName().c_str(), "QK weight shape mismatch");
return GRAPH_FAILED;
}
// 设置输出形状(与输入相同)
ge::Shape output_shape({batch_size, seq_len, hidden_size});
auto output_desc = ge::TensorDesc(output_shape, ge::FORMAT_ND, input_dtype);
op.update_output_desc_query(output_desc);
op.update_output_desc_key(output_desc);
return GRAPH_SUCCESS;
}
INFER_FUNC_REG(FusedRMSNormRoPE, FusedRMSNormRoPEInfer);
// 数据类型推导
IMPLEMT_VERIFIER(FusedRMSNormRoPE, FusedRMSNormRoPEVerify) {
// 验证所有浮点输入的数据类型一致
auto input_dtype = op.GetInputDescByName("input").GetDataType();
auto weight_dtype = op.GetInputDescByName("weight").GetDataType();
auto qk_weight_dtype = op.GetInputDescByName("qk_weight").GetDataType();
if (input_dtype != weight_dtype || input_dtype != qk_weight_dtype) {
OP_LOGE(op.GetName().c_str(), "All float inputs must have same data type");
return GRAPH_FAILED;
}
return GRAPH_SUCCESS;
}
VERIFY_FUNC_REG(FusedRMSNormRoPE, FusedRMSNormRoPEVerify);
} // namespace ge
步骤2:实现Tiling策略(fused_rmsnorm_rope_tiling.h/cpp)
cpp
// fused_rmsnorm_rope_tiling.h
#ifndef FUSED_RMSNORM_ROPE_TILING_H
#define FUSED_RMSNORM_ROPE_TILING_H
#include <cstdint>
namespace optiling {
// Tiling配置结构
struct FusedRMSNormRoPETilingConfig {
int32_t batch_size;
int32_t seq_len;
int32_t hidden_size;
int32_t num_heads;
int32_t head_dim;
// Tiling参数
int32_t seq_tile_size; // 序列方向的块大小
int32_t hidden_tile_size; // 隐藏维度的块大小
int32_t num_seq_tiles; // 序列方向的块数量
int32_t num_hidden_tiles; // 隐藏维度的块数量
// 优化标志
bool use_double_buffer; // 是否使用双缓冲
int32_t pipeline_depth; // 流水线深度
float epsilon; // RMSNorm的epsilon
};
// Tiling计算函数
int32_t CalculateTiling(
const ge::Operator& op,
FusedRMSNormRoPETilingConfig& config
);
} // namespace optiling
#endif // FUSED_RMSNORM_ROPE_TILING_H
cpp
// fused_rmsnorm_rope_tiling.cpp
#include "fused_rmsnorm_rope_tiling.h"
#include "register/op_tiling_registry.h"
namespace optiling {
constexpr int32_t LOCAL_BUFFER_SIZE = 512 * 1024; // 512KB Local Buffer
constexpr int32_t ALIGNMENT = 32; // 32字节对齐
// 向上对齐辅助函数
static inline int32_t AlignUp(int32_t value, int32_t alignment) {
return (value + alignment - 1) / alignment * alignment;
}
int32_t CalculateTiling(
const ge::Operator& op,
FusedRMSNormRoPETilingConfig& config
) {
// 获取输入形状
auto input_shape = op.GetInputDescByName("input").GetShape();
config.batch_size = input_shape.GetDim(0);
config.seq_len = input_shape.GetDim(1);
config.hidden_size = input_shape.GetDim(2);
// 获取属性
config.num_heads = op.GetAttr("num_heads").GetInt();
config.head_dim = op.GetAttr("head_dim").GetInt();
config.epsilon = op.GetAttr("epsilon").GetFloat();
// 计算数据类型大小
auto dtype = op.GetInputDescByName("input").GetDataType();
int32_t element_size = (dtype == ge::DT_FLOAT) ? 4 : 2; // FP32:4字节, FP16/BF16:2字节
// 计算所需的buffer大小
// 需要存储:input块、weight、qk_weight部分、临时结果、output块
int32_t per_seq_size = config.hidden_size * element_size;
int32_t per_hidden_size = config.seq_len * element_size;
// 序列方向的Tiling
// 目标:在Local Buffer中存放尽可能多的序列
int32_t buffer_for_seq = LOCAL_BUFFER_SIZE / 3; // 分配1/3给序列相关数据
config.seq_tile_size = std::min(
config.seq_len,
buffer_for_seq / per_seq_size
);
config.seq_tile_size = AlignUp(config.seq_tile_size, 16); // 对齐到16
config.num_seq_tiles = (config.seq_len + config.seq_tile_size - 1) / config.seq_tile_size;
// 隐藏维度的Tiling
// 对于RMSNorm和RoPE,通常不需要在hidden维度分块
// 但对于超大模型(如hidden_size > 8192),可能需要分块
if (config.hidden_size * element_size * config.seq_tile_size > LOCAL_BUFFER_SIZE / 2) {
// 需要在hidden维度分块
int32_t buffer_for_hidden = LOCAL_BUFFER_SIZE / 2;
config.hidden_tile_size = buffer_for_hidden / (config.seq_tile_size * element_size);
config.hidden_tile_size = AlignUp(config.hidden_tile_size, ALIGNMENT);
config.num_hidden_tiles = (config.hidden_size + config.hidden_tile_size - 1) / config.hidden_tile_size;
} else {
// 不需要在hidden维度分块
config.hidden_tile_size = config.hidden_size;
config.num_hidden_tiles = 1;
}
// 决定是否使用双缓冲和流水线
if (config.num_seq_tiles >= 3) {
config.use_double_buffer = true;
config.pipeline_depth = 2;
} else {
config.use_double_buffer = false;
config.pipeline_depth = 1;
}
return 0; // 成功
}
// 注册Tiling函数
REGISTER_OP_TILING(FusedRMSNormRoPE, CalculateTiling);
} // namespace optiling
3.2 Kernel实现(op_kernel)
Kernel主体(fused_rmsnorm_rope.cpp)
cpp
#include "kernel_operator.h"
#include <type_traits>
using namespace AscendC;
// Kernel类定义
template<typename T>
class FusedRMSNormRoPEKernel {
public:
__aicore__ inline FusedRMSNormRoPEKernel() {}
__aicore__ inline void Init(
GM_ADDR input_gm,
GM_ADDR weight_gm,
GM_ADDR qk_weight_gm,
GM_ADDR position_ids_gm,
GM_ADDR cos_table_gm,
GM_ADDR sin_table_gm,
GM_ADDR query_out_gm,
GM_ADDR key_out_gm,
const FusedRMSNormRoPETilingConfig* tiling
) {
// 保存Tiling配置
this->tiling = *tiling;
// 设置Global Memory指针
input_gm_ptr = (__gm__ T*)input_gm;
weight_gm_ptr = (__gm__ T*)weight_gm;
qk_weight_gm_ptr = (__gm__ T*)qk_weight_gm;
position_ids_gm_ptr = (__gm__ int32_t*)position_ids_gm;
cos_table_gm_ptr = (__gm__ T*)cos_table_gm;
sin_table_gm_ptr = (__gm__ T*)sin_table_gm;
query_out_gm_ptr = (__gm__ T*)query_out_gm;
key_out_gm_ptr = (__gm__ T*)key_out_gm;
// 分配Local Buffer
AllocateBuffers();
// 预加载权重(权重在整个计算过程中不变)
LoadWeights();
}
__aicore__ inline void Process() {
// 遍历batch
for (int b = 0; b < tiling.batch_size; ++b) {
// 遍历序列块
for (int seq_tile_idx = 0; seq_tile_idx < tiling.num_seq_tiles; ++seq_tile_idx) {
ProcessSeqTile(b, seq_tile_idx);
}
}
}
private:
__aicore__ inline void AllocateBuffers() {
int32_t seq_tile_size = tiling.seq_tile_size;
int32_t hidden_size = tiling.hidden_size;
// 输入输出buffer
pipe.InitBuffer(input_local, seq_tile_size, hidden_size);
pipe.InitBuffer(normalized_local, seq_tile_size, hidden_size);
pipe.InitBuffer(qk_local, seq_tile_size, 2 * hidden_size);
pipe.InitBuffer(query_local, seq_tile_size, hidden_size);
pipe.InitBuffer(key_local, seq_tile_size, hidden_size);
// 权重buffer
pipe.InitBuffer(weight_local, hidden_size);
pipe.InitBuffer(qk_weight_local, hidden_size, 2 * hidden_size);
// 临时buffer
pipe.InitBuffer(rms_local, seq_tile_size); // 存储RMS值
pipe.InitBuffer(position_local, seq_tile_size); // 位置索引
}
__aicore__ inline void LoadWeights() {
// 加载RMSNorm权重
DataCopy(weight_local, weight_gm_ptr, tiling.hidden_size);
// 加载QK线性变换权重
DataCopy(qk_weight_local, qk_weight_gm_ptr,
tiling.hidden_size * 2 * tiling.hidden_size);
}
__aicore__ inline void ProcessSeqTile(int batch_idx, int seq_tile_idx) {
int32_t seq_start = seq_tile_idx * tiling.seq_tile_size;
int32_t seq_end = std::min(seq_start + tiling.seq_tile_size, tiling.seq_len);
int32_t actual_seq_len = seq_end - seq_start;
// 1. 加载输入数据
int64_t input_offset = batch_idx * tiling.seq_len * tiling.hidden_size +
seq_start * tiling.hidden_size;
DataCopy(input_local, input_gm_ptr + input_offset,
actual_seq_len * tiling.hidden_size);
// 2. 执行RMSNorm
ComputeRMSNorm(actual_seq_len);
// 3. 线性变换得到Q和K
ComputeLinearQK(actual_seq_len);
// 4. 加载位置索引
int64_t pos_offset = batch_idx * tiling.seq_len + seq_start;
DataCopy(position_local, position_ids_gm_ptr + pos_offset, actual_seq_len);
// 5. 应用RoPE
ApplyRoPE(actual_seq_len, batch_idx, seq_start);
// 6. 存储输出
int64_t output_offset = batch_idx * tiling.seq_len * tiling.hidden_size +
seq_start * tiling.hidden_size;
DataCopy(query_out_gm_ptr + output_offset, query_local,
actual_seq_len * tiling.hidden_size);
DataCopy(key_out_gm_ptr + output_offset, key_local,
actual_seq_len * tiling.hidden_size);
}
__aicore__ inline void ComputeRMSNorm(int32_t seq_len) {
// 对每个token计算RMS
for (int i = 0; i < seq_len; ++i) {
// 计算平方和
LocalTensor<T> input_row = input_local[i];
float sum_squares = 0.0f;
// 向量化求平方和
LocalTensor<float> squares;
Mul(squares, input_row, input_row); // x^2
sum_squares = ReduceSum(squares, tiling.hidden_size);
// 计算RMS
float mean_squares = sum_squares / tiling.hidden_size;
float rms = std::sqrt(mean_squares + tiling.epsilon);
rms_local[i] = rms;
// 归一化并乘以权重
float inv_rms = 1.0f / rms;
for (int j = 0; j < tiling.hidden_size; ++j) {
float normalized_val = static_cast<float>(input_row[j]) * inv_rms;
float weighted_val = normalized_val * static_cast<float>(weight_local[j]);
normalized_local[i][j] = static_cast<T>(weighted_val);
}
}
}
__aicore__ inline void ComputeLinearQK(int32_t seq_len) {
// 矩阵乘法:[seq_len, hidden_size] @ [hidden_size, 2*hidden_size]
// 结果:[seq_len, 2*hidden_size]
MatMul(qk_local, normalized_local, qk_weight_local);
// 分离Q和K
for (int i = 0; i < seq_len; ++i) {
// 前half是Query,后half是Key
DataCopy(query_local[i], qk_local[i], tiling.hidden_size);
DataCopy(key_local[i], qk_local[i] + tiling.hidden_size, tiling.hidden_size);
}
}
__aicore__ inline void ApplyRoPE(int32_t seq_len, int batch_idx, int seq_start) {
int32_t num_heads = tiling.num_heads;
int32_t head_dim = tiling.head_dim;
// 对每个token
for (int i = 0; i < seq_len; ++i) {
int32_t position = position_local[i];
// 对每个head
for (int h = 0; h < num_heads; ++h) {
int32_t head_offset = h * head_dim;
// 对head_dim中的每一对元素应用旋转
for (int d = 0; d < head_dim; d += 2) {
int32_t idx = head_offset + d;
// 从查找表获取cos和sin
T cos_val = cos_table_gm_ptr[position * head_dim + d];
T sin_val = sin_table_gm_ptr[position * head_dim + d];
// 应用旋转矩阵到Query
T q0 = query_local[i][idx];
T q1 = query_local[i][idx + 1];
query_local[i][idx] = q0 * cos_val - q1 * sin_val;
query_local[i][idx + 1] = q0 * sin_val + q1 * cos_val;
// 应用旋转矩阵到Key
T k0 = key_local[i][idx];
T k1 = key_local[i][idx + 1];
key_local[i][idx] = k0 * cos_val - k1 * sin_val;
key_local[i][idx + 1] = k0 * sin_val + k1 * cos_val;
}
}
}
}
// 成员变量
FusedRMSNormRoPETilingConfig tiling;
// Global Memory指针
__gm__ T* input_gm_ptr;
__gm__ T* weight_gm_ptr;
__gm__ T* qk_weight_gm_ptr;
__gm__ int32_t* position_ids_gm_ptr;
__gm__ T* cos_table_gm_ptr;
__gm__ T* sin_table_gm_ptr;
__gm__ T* query_out_gm_ptr;
__gm__ T* key_out_gm_ptr;
// Local Tensors
LocalTensor<T> input_local, normalized_local, qk_local;
LocalTensor<T> query_local, key_local;
LocalTensor<T> weight_local, qk_weight_local;
LocalTensor<float> rms_local;
LocalTensor<int32_t> position_local;
TPipe pipe;
};
// Kernel入口函数
extern "C" __global__ __aicore__ void fused_rmsnorm_rope_main(
GM_ADDR input,
GM_ADDR weight,
GM_ADDR qk_weight,
GM_ADDR position_ids,
GM_ADDR cos_table,
GM_ADDR sin_table,
GM_ADDR query_out,
GM_ADDR key_out,
GM_ADDR tiling_gm
) {
// 加载Tiling配置
FusedRMSNormRoPETilingConfig tiling;
auto tiling_ptr = (__gm__ FusedRMSNormRoPETilingConfig*)tiling_gm;
tiling = *tiling_ptr;
// 根据数据类型实例化Kernel
if (tiling.dtype == DT_FLOAT16) {
FusedRMSNormRoPEKernel<half> kernel;
kernel.Init(input, weight, qk_weight, position_ids, cos_table, sin_table,
query_out, key_out, &tiling);
kernel.Process();
} else if (tiling.dtype == DT_FLOAT) {
FusedRMSNormRoPEKernel<float> kernel;
kernel.Init(input, weight, qk_weight, position_ids, cos_table, sin_table,
query_out, key_out, &tiling);
kernel.Process();
}
}
3.3 CMakeLists.txt配置
cmake
cmake_minimum_required(VERSION 3.14)
project(fused_rmsnorm_rope)
# 设置算子名称
set(OP_NAME fused_rmsnorm_rope)
# 设置源文件
set(OP_HOST_SRCS
op_host/fused_rmsnorm_rope.cpp
op_host/fused_rmsnorm_rope_tiling.cpp
)
set(OP_KERNEL_SRCS
op_kernel/fused_rmsnorm_rope.cpp
)
# 编译选项
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3 -Wall")
# 包含common头文件
include_directories(${CMAKE_SOURCE_DIR}/common/include)
# 注册算子
ascend_add_operator(${OP_NAME}
HOST_SRCS ${OP_HOST_SRCS}
KERNEL_SRCS ${OP_KERNEL_SRCS}
)
# 链接依赖
target_link_libraries(${OP_NAME}
ops_transformer_common
${ASCEND_RUNTIME_LIBS}
)
# 安装目标
install(TARGETS ${OP_NAME}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib
)
# 安装头文件
install(FILES
op_host/fused_rmsnorm_rope_tiling.h
DESTINATION include
)
四、测试与验证
4.1 功能正确性测试
python
# examples/test_fused_rmsnorm_rope.py
import torch
import torch_npu
import numpy as np
import math
def rms_norm(x, weight, epsilon=1e-6):
"""标准RMSNorm实现"""
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + epsilon)
return x * weight
def apply_rope(x, cos, sin, position_ids):
"""标准RoPE实现"""
batch_size, seq_len, num_heads, head_dim = x.shape
x = x.reshape(batch_size, seq_len, num_heads, head_dim // 2, 2)
# 获取cos和sin
cos_pos = cos[position_ids].unsqueeze(2).unsqueeze(-1) # [batch, seq, 1, head_dim//2, 1]
sin_pos = sin[position_ids].unsqueeze(2).unsqueeze(-1)
# 应用旋转
x0, x1 = x[..., 0], x[..., 1]
x_rotated = torch.stack([
x0 * cos_pos - x1 * sin_pos,
x0 * sin_pos + x1 * cos_pos
], dim=-1)
return x_rotated.reshape(batch_size, seq_len, num_heads * head_dim)
def test_correctness():
print("=" * 60)
print("Testing FusedRMSNormRoPE Correctness")
print("=" * 60)
# 测试配置
batch_size = 2
seq_len = 128
hidden_size = 512
num_heads = 8
head_dim = hidden_size // num_heads
epsilon = 1e-6
# 生成随机输入
torch.manual_seed(42)
input_tensor = torch.randn(batch_size, seq_len, hidden_size, dtype=torch.float16).npu()
weight = torch.randn(hidden_size, dtype=torch.float16).npu()
qk_weight = torch.randn(hidden_size, 2 * hidden_size, dtype=torch.float16).npu()
position_ids = torch.arange(seq_len, dtype=torch.int32).unsqueeze(0).repeat(batch_size, 1).npu()
# 生成RoPE查找表
max_seq_len = 2048
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2, dtype=torch.float32) / head_dim))
t = torch.arange(max_seq_len, dtype=torch.float32)
freqs = torch.outer(t, inv_freq)
cos_table = torch.cos(freqs).half().npu()
sin_table = torch.sin(freqs).half().npu()
# 调用融合算子
query_fused, key_fused = torch_npu.npu_fused_rmsnorm_rope(
input_tensor, weight, qk_weight, position_ids,
cos_table, sin_table,
epsilon=epsilon,
num_heads=num_heads,
head_dim=head_dim
)
# 标准实现
# 1. RMSNorm
normalized = rms_norm(input_tensor, weight, epsilon)
# 2. 线性变换
qk = torch.matmul(normalized, qk_weight)
query_ref = qk[..., :hidden_size]
key_ref = qk[..., hidden_size:]
# 3. Reshape for RoPE
query_ref = query_ref.view(batch_size, seq_len, num_heads, head_dim)
key_ref = key_ref.view(batch_size, seq_len, num_heads, head_dim)
# 4. 应用RoPE
query_ref = apply_rope(query_ref, cos_table, sin_table, position_ids)
key_ref = apply_rope(key_ref, cos_table, sin_table, position_ids)
# 比较结果
query_diff = torch.abs(query_fused - query_ref).max().item()
key_diff = torch.abs(key_fused - key_ref).max().item()
query_rel_error = query_diff / torch.abs(query_ref).max().item()
key_rel_error = key_diff / torch.abs(key_ref).max().item()
print(f"\nQuery:")
print(f" Max absolute difference: {query_diff:.6f}")
print(f" Relative error: {query_rel_error:.6f}")
print(f"\nKey:")
print(f" Max absolute difference: {key_diff:.6f}")
print(f" Relative error: {key_rel_error:.6f}")
# FP16精度下,相对误差应小于1e-3
threshold = 1e-3
if query_rel_error < threshold and key_rel_error < threshold:
print(f"\n✓ Correctness test PASSED (threshold: {threshold})")
return True
else:
print(f"\n✗ Correctness test FAILED (threshold: {threshold})")
return False
if __name__ == "__main__":
test_correctness()
4.2 性能基准测试
python
# examples/benchmark.py
import torch
import torch_npu
import time
import pandas as pd
def benchmark():
print("=" * 80)
print("FusedRMSNormRoPE Performance Benchmark")
print("=" * 80)
# 测试配置
configs = [
# (batch, seq_len, hidden_size, num_heads)
(1, 512, 4096, 32),
(1, 1024, 4096, 32),
(1, 2048, 4096, 32),
(2, 1024, 4096, 32),
(4, 512, 4096, 32),
(1, 2048, 8192, 64), # 大模型配置
]
num_warmup = 20
num_iterations = 100
results = []
for batch, seq_len, hidden_size, num_heads in configs:
head_dim = hidden_size // num_heads
# 准备输入
input_tensor = torch.randn(batch, seq_len, hidden_size, dtype=torch.float16).npu()
weight = torch.randn(hidden_size, dtype=torch.float16).npu()
qk_weight = torch.randn(hidden_size, 2 * hidden_size, dtype=torch.float16).npu()
position_ids = torch.arange(seq_len, dtype=torch.int32).unsqueeze(0).repeat(batch, 1).npu()
# RoPE表
max_seq_len = 8192
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2, dtype=torch.float32) / head_dim))
t = torch.arange(max_seq_len, dtype=torch.float32)
freqs = torch.outer(t, inv_freq)
cos_table = torch.cos(freqs).half().npu()
sin_table = torch.sin(freqs).half().npu()
# 预热
for _ in range(num_warmup):
_ = torch_npu.npu_fused_rmsnorm_rope(
input_tensor, weight, qk_weight, position_ids,
cos_table, sin_table,
num_heads=num_heads, head_dim=head_dim
)
torch.npu.synchronize()
# 测试融合算子
start = time.time()
for _ in range(num_iterations):
query, key = torch_npu.npu_fused_rmsnorm_rope(
input_tensor, weight, qk_weight, position_ids,
cos_table, sin_table,
num_heads=num_heads, head_dim=head_dim
)
torch.npu.synchronize()
fused_time = (time.time() - start) / num_iterations * 1000
# 测试分离实现
start = time.time()
for _ in range(num_iterations):
# RMSNorm
variance = input_tensor.pow(2).mean(-1, keepdim=True)
normalized = input_tensor * torch.rsqrt(variance + 1e-6) * weight
# Linear
qk = torch.matmul(normalized, qk_weight)
q = qk[..., :hidden_size]
k = qk[..., hidden_size:]
# RoPE (simplified)
query = q # 实际应用RoPE会更慢
key = k
torch.npu.synchronize()
separate_time = (time.time() - start) / num_iterations * 1000
speedup = separate_time / fused_time
results.append({
'Batch': batch,
'SeqLen': seq_len,
'HiddenSize': hidden_size,
'NumHeads': num_heads,
'Fused (ms)': f"{fused_time:.3f}",
'Separate (ms)': f"{separate_time:.3f}",
'Speedup': f"{speedup:.2f}x"
})
print(f"B{batch}_S{seq_len}_H{hidden_size}_N{num_heads}: "
f"Fused={fused_time:.3f}ms, Separate={separate_time:.3f}ms, "
f"Speedup={speedup:.2f}x")
# 打印结果表格
df = pd.DataFrame(results)
print("\n" + "=" * 80)
print("Summary:")
print("=" * 80)
print(df.to_string(index=False))
print("=" * 80)
if __name__ == "__main__":
benchmark()
五、编译与部署
5.1 编译算子
bash
# 返回ops-transformer根目录
cd /path/to/ops-transformer
# 配置编译
mkdir -p build && cd build
cmake .. \
-DCMAKE_BUILD_TYPE=Release \
-DENABLE_CUSTOM_OPS=ON \
-DCUSTOM_OPS_DIR=../experimental/custom_ops
# 编译
make fused_rmsnorm_rope -j$(nproc)
# 安装
make install
5.2 运行测试
bash
# 设置环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh
export LD_LIBRARY_PATH=/path/to/ops-transformer/build/lib:$LD_LIBRARY_PATH
# 运行正确性测试
python experimental/custom_ops/fused_rmsnorm_rope/examples/test_fused_rmsnorm_rope.py
# 运行性能测试
python experimental/custom_ops/fused_rmsnorm_rope/examples/benchmark.py
5.3 集成到模型
python
# 在LLaMA模型中使用
class LlamaAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.rms_norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.qk_proj = nn.Linear(config.hidden_size, 2 * config.hidden_size, bias=False)
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
# 预计算RoPE表
self.register_buffer("cos_table", self._compute_cos_table())
self.register_buffer("sin_table", self._compute_sin_table())
def forward(self, hidden_states, position_ids):
# 使用融合算子
query, key = torch_npu.npu_fused_rmsnorm_rope(
hidden_states,
self.rms_norm.weight,
self.qk_proj.weight.t(),
position_ids,
self.cos_table,
self.sin_table,
epsilon=self.config.rms_norm_eps,
num_heads=self.num_heads,
head_dim=self.head_dim
)
# Value仍使用标准路径
value = self.v_proj(self.rms_norm(hidden_states))
# 后续attention计算...
return attention_output
六、调试与优化技巧
6.1 使用DumpTensor调试
cpp
// 在Kernel中插入dump代码
__aicore__ inline void ComputeRMSNorm(int32_t seq_len) {
// ... 计算代码 ...
// Dump中间结果
#ifdef DEBUG_MODE
DumpTensor("normalized_output", normalized_local, seq_len * tiling.hidden_size);
#endif
}
6.2 性能分析
bash
# 使用msProf分析
msprof --application="python test.py" \
--output=/tmp/profiling \
--ai-core=on \
--aicpu=on
# 查看报告
msprof --export=timeline --output=/tmp/profiling
6.3 常见优化技巧
- 内存对齐:确保数据按32字节对齐
- 向量化:使用向量指令替代标量循环
- 流水线:使用双缓冲重叠计算和IO
- 减少Bank冲突:调整数据布局
- 循环展开:减少循环控制开销
七、总结
通过本文的实战演练,我们完整地走过了自定义算子开发的全流程:
- 需求分析:识别融合机会,量化性能收益
- 接口设计:定义清晰的算子接口和参数
- Tiling策略:根据硬件特性设计数据分块
- Kernel实现:编写高效的计算逻辑
- 测试验证:确保功能正确性和性能达标
- 集成应用:无缝集成到实际模型中
FusedRMSNormRoPE算子展示了ops-transformer框架的强大能力和灵活性。开发者可以基于相同的方法论,开发各种自定义算子,为AI应用提供极致性能。
关键要点:
- 融合算子可以显著减少内存访问,提升性能
- Tiling策略是性能优化的核心
- 完善的测试是算子质量的保证
- ops-transformer提供了完整的开发框架和工具支持
欢迎更多开发者加入CANN生态,贡献优秀算子!
相关资源:
- ops-transformer仓库:https://gitcode.com/cann/ops-transformer
- CANN文档中心:https://hiascend.com/document
- QuickStart指南:QUICKSTART.md
- 算子开发指南:docs/zh/develop/aicore_develop_guide.md
- 社区论坛:https://gitcode.com/cann/ops-transformer/discussions