Lumina-DiMOO:用于多模态生成与理解的全扩散大语言模型

📚 简介

我们推出Lumina-DiMOO------一个实现无缝多模态生成与理解的全能基础模型。Lumina-DiMOO凭借四大创新突破脱颖而出:

  • 统一的离散扩散架构:采用完全离散的扩散建模处理跨模态输入输出,这与先前统一模型形成显著差异。

  • 全能多模态能力:支持广泛的多模态任务,包括文本到图像生成(支持任意高分辨率)、图像到图像生成(如图像编辑、主体驱动生成和图像修复等),以及高级图像理解。

  • 更高采样效率:相比传统自回归或混合自回归-扩散范式,Lumina-DiMOO展现出卓越的采样效率。我们还设计了定制缓存方法,使采样速度进一步提升2倍。

  • 顶尖性能表现:在多项基准测试中达到最先进水平,超越现有开源统一多模态模型,树立了领域新标杆。

📽️ 定性结果

这里我们展示了与其他模型的部分生成效果对比。更多可视化结果请参见我们的项目主页

文本到图像比较
图片编辑对比
可控性与主题驱动生成对比
图像修复与外推

📊 量化表现

GenEval Benchmark
DPG Benchmark
OneIG-EN Benchmark
TIIF Benchmark
Image-to-Image Benchmark
Image Understanding Benchmark

🚀 采样速度分析

  • 由于文本生成是以块为单位进行的,与图像生成采用单一全局解码步骤不同,其速度受块数和步数的双重影响。因此,图像理解的速度提升不如图像生成显著。

  • Lumina-DiMOO 设置:图像生成采样64步;图像理解设置块长度为256,采样步数为128。

采样速度对比

📜 致谢

本工作还得到了MindSpeed MM的支持与实现,这是一个由华为计算产品线开发并维护的开源大规模多模态模型训练框架,专为分布式训练而设计。MindSpeed MM特别针对华为昇腾AI芯片进行了优化,为分布式训练提供全面支持,并适用于广泛的多模态任务。

相关推荐
serve the people9 分钟前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K89231 分钟前
前端机器学习
人工智能·机器学习
陈天伟教授34 分钟前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_650108241 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy10111 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里1 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算
0***R5151 小时前
人工智能在金融风控中的应用
人工智能
2501_941403761 小时前
人工智能赋能智慧金融互联网应用:智能风控、个性化理财与金融服务优化实践探索》
人工智能
墨风如雪1 小时前
深夜炸场!Claude Opus 4.5发布,程序员的饭碗这次真悬了?
aigc
合作小小程序员小小店2 小时前
web网页,在线%抖音,舆情,线性回归%分析系统demo,基于python+web+echart+nlp+线性回归,训练,数据库mysql
python·自然语言处理·回归·nlp·线性回归