TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras实现分类问题

锋哥原创的TensorFlow2 Python深度学习视频教程:

https://www.bilibili.com/video/BV1X5xVz6E4w/

课程介绍

本课程主要讲解基于TensorFlow2的Python深度学习知识,包括深度学习概述,TensorFlow2框架入门知识,以及卷积神经网络(CNN),循环神经网络(RNN),生成对抗网络(GAN),模型保存与加载等。

TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras实现分类问题

我们使用TensorFlow2 Keras实现分类问题,数据集使用之前机器学习用到的鸢尾花数据集。四个特征,三个目标类别。

输出层激活函数是softmax。将网络的原始输出值转换成概率分布,方便理解和比较不同类别的预测。

示例代码:

复制代码
import tensorflow as tf
from keras import Input, layers
from sklearn.datasets import load_iris
​
# 1,加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度
y = iris.target  # 标签:0-Setosa, 1-Versicolour, 2-Virginica
​
# 2,构建分类模型
model = tf.keras.models.Sequential([
    Input(shape=(X.shape[1],)),  # 输入层
    layers.Dense(16, activation='relu'),  # 隐藏层
    layers.Dense(3, activation='softmax')  # 输出层 3个神经元,对应3个类别
])
​
# 3,模型编译
model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',  # 多分类交叉熵损失函数
    metrics=['accuracy']  # 评估指标:准确率
)
​
# 4,模型训练
history = model.fit(X, y, epochs=200, batch_size=32, verbose=1)
print(f"最终损失: {history.history['loss'][-1]:.4f}, 最终准确率: {history.history['accuracy'][-1]:.4f}")

运行输出:

相关推荐
风儿你慢慢吹2 分钟前
python __init__.py的意义与使用
python
superman超哥6 分钟前
仓颉语言中网络套接字封装的深度剖析与工程实践
c语言·开发语言·c++·python·仓颉
陈天伟教授10 分钟前
人工智能训练师认证教程(4)OpenCV 快速实践
人工智能·python·神经网络·opencv·机器学习·计算机视觉
RAY_010434 分钟前
Python—数据可视化pyecharts
开发语言·python
jumu20241 分钟前
高比例清洁能源接入下计及需求响应的配电网重构 关键词:高比例清洁能源;需求响应;配电网重构
tensorflow
Lvan的前端笔记1 小时前
python:用 dotenv 管理环境变量&生产环境怎么管理环境变量
网络·数据库·python
Java Fans1 小时前
用PyQt打造带动画、碰撞检测和键盘控制的小游戏
python·计算机外设·pyqt
深蓝海拓1 小时前
PySide6从0开始学习的笔记(十一) QSS 属性选择器
笔记·python·qt·学习·pyqt
AAA_bo11 小时前
liunx安装canda、python、nodejs、git,随后部署私有网页内容提取工具--JinaReader全攻略
linux·python·ubuntu·typescript·aigc·python3.11·jina
高洁011 小时前
DNN案例一步步构建深层神经网络(3)
python·深度学习·算法·机器学习·transformer