TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras实现分类问题

锋哥原创的TensorFlow2 Python深度学习视频教程:

https://www.bilibili.com/video/BV1X5xVz6E4w/

课程介绍

本课程主要讲解基于TensorFlow2的Python深度学习知识,包括深度学习概述,TensorFlow2框架入门知识,以及卷积神经网络(CNN),循环神经网络(RNN),生成对抗网络(GAN),模型保存与加载等。

TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras实现分类问题

我们使用TensorFlow2 Keras实现分类问题,数据集使用之前机器学习用到的鸢尾花数据集。四个特征,三个目标类别。

输出层激活函数是softmax。将网络的原始输出值转换成概率分布,方便理解和比较不同类别的预测。

示例代码:

复制代码
import tensorflow as tf
from keras import Input, layers
from sklearn.datasets import load_iris
​
# 1,加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度
y = iris.target  # 标签:0-Setosa, 1-Versicolour, 2-Virginica
​
# 2,构建分类模型
model = tf.keras.models.Sequential([
    Input(shape=(X.shape[1],)),  # 输入层
    layers.Dense(16, activation='relu'),  # 隐藏层
    layers.Dense(3, activation='softmax')  # 输出层 3个神经元,对应3个类别
])
​
# 3,模型编译
model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',  # 多分类交叉熵损失函数
    metrics=['accuracy']  # 评估指标:准确率
)
​
# 4,模型训练
history = model.fit(X, y, epochs=200, batch_size=32, verbose=1)
print(f"最终损失: {history.history['loss'][-1]:.4f}, 最终准确率: {history.history['accuracy'][-1]:.4f}")

运行输出:

相关推荐
Hgfdsaqwr1 天前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
weixin_395448911 天前
export_onnx.py_0130
pytorch·python·深度学习
s1hiyu1 天前
使用Scrapy框架构建分布式爬虫
jvm·数据库·python
2301_763472461 天前
使用Seaborn绘制统计图形:更美更简单
jvm·数据库·python
无垠的广袤1 天前
【VisionFive 2 Lite 单板计算机】边缘AI视觉应用部署:缺陷检测
linux·人工智能·python·opencv·开发板
Duang007_1 天前
【LeetCodeHot100 超详细Agent启发版本】字母异位词分组 (Group Anagrams)
开发语言·javascript·人工智能·python
浒畔居1 天前
机器学习模型部署:将模型转化为Web API
jvm·数据库·python
抠头专注python环境配置1 天前
基于Pytorch ResNet50 的珍稀野生动物识别系统(Python源码 + PyQt5 + 数据集)
pytorch·python
百***78751 天前
Kimi K2.5开源模型实战指南:核心能力拆解+一步API接入(Python版,避坑全覆盖)
python·microsoft·开源
喵手1 天前
Python爬虫实战:针对天文历法网站(以 TimeandDate 或类似的静态历法页为例),构建高精度二十四节气天文数据采集器(附xlsx导出)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集天文历法网站数据·构建二十四节气天文数据