一文讲清:AI大模型的底层原理是什么?

01 文本分割成Token

什么是Token?

Token: 单词表,大模型"推理"和"生成"的最小计算单位

Token数和单词/汉字数没有一一对应关系,以对DeepSeek V3为例

1个中文字符 ≈ 0.6 个Token

1个英文字符 ≈ 0.3个Token

文章篇幅有限,不便展示AI大模型全部资源。更多AI大模型学习视频及资源,都在智泊AI

为什么进行分割Token?

把句子拆成Token的目的是为了方便进行后面的推理数学计算。

举个栗子

我们发送文本(Prompt)内容为"生成式AI是什么东西?"给大模型后,大模型先会按照模型预训练时的分词规则将我们的Prompt进行拆分,分割成"生成、式、AI、是什么、东西、?"6个Token。

图示如下

02 嵌入-向量化

把文字向量化

嵌入层: 大模型会将已经拆分好的Token嵌入到它的Token单词表中进行随机的标号,这个标号也叫做嵌入。

嵌入-向量化: 可以实现对语言中最小组成部分(Token)的对比和归类。

图示如下

03 多层推理

调整隐藏状态值

推理层: 自注意力机制对已嵌入的Token与该词所在单词表中的位置和与其他词的关系进行隐藏状态值调整。

隐藏状态值: 这一层调整的不是嵌入层标号的参数,那个参数嵌入后就已经固定了,它调整的是隐藏状态值。

图示如下

04 向量计算-最终预测

调整隐藏状态值

掌握规律: 通过推理层对整句提示词中的隐藏状态值调整完成后,就能得到token的整体走向趋势(规律)。

预测生成词: 根据已掌握的整体走向规律,会进行下一个生成词的预测,预测结果包含但不限于去搞概率的词。

预测生成词: 将选择的Token作为下一个Token加到句子中,然后又生成了一个新的一句话,重复上面的(1、2、3)步骤,直到大模型计算完了后面不需要有了,非常合理了,以'。'结束。

一图回顾

相关推荐
kaizq3 小时前
AI-MCP-SQLite-SSE本地服务及CherryStudio便捷应用
python·sqlite·llm·sse·mcp·cherry studio·fastmcp
亚里随笔6 小时前
GenEnv:让AI智能体像人一样在_游戏_中成长
人工智能·游戏·llm·rl·agentic
彼岸花开了吗9 小时前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm
栀秋66610 小时前
智能驱动的 Git 提交:基于 Ollama 大模型的规范化提交信息生成方案
react.js·llm·ollama
AI架构师易筋12 小时前
AIOps 告警归因中的提示工程:从能用到可上生产(4 阶梯)
开发语言·人工智能·llm·aiops·rag
小小宫城狮13 小时前
BPE 算法原理与训练实现
算法·llm
且去填词15 小时前
DeepSeek :基于 AST 与 AI 的遗留系统“手术刀”式治理方案
人工智能·自动化·llm·ast·agent·策略模式·deepseek
且去填词15 小时前
构建基于 DeepEval 的 LLM 自动化评估流水线
运维·人工智能·python·自动化·llm·deepseek·deepeval
CoderJia程序员甲1 天前
GitHub 热榜项目 - 日榜(2026-1-9)
开源·大模型·llm·github·ai教程
树獭非懒2 天前
AI大模型小白手册|如何像工程师一样写Prompt?
llm·aigc·ai编程