一文讲清:AI大模型的底层原理是什么?

01 文本分割成Token

什么是Token?

Token: 单词表,大模型"推理"和"生成"的最小计算单位

Token数和单词/汉字数没有一一对应关系,以对DeepSeek V3为例

1个中文字符 ≈ 0.6 个Token

1个英文字符 ≈ 0.3个Token

文章篇幅有限,不便展示AI大模型全部资源。更多AI大模型学习视频及资源,都在智泊AI

为什么进行分割Token?

把句子拆成Token的目的是为了方便进行后面的推理数学计算。

举个栗子

我们发送文本(Prompt)内容为"生成式AI是什么东西?"给大模型后,大模型先会按照模型预训练时的分词规则将我们的Prompt进行拆分,分割成"生成、式、AI、是什么、东西、?"6个Token。

图示如下

02 嵌入-向量化

把文字向量化

嵌入层: 大模型会将已经拆分好的Token嵌入到它的Token单词表中进行随机的标号,这个标号也叫做嵌入。

嵌入-向量化: 可以实现对语言中最小组成部分(Token)的对比和归类。

图示如下

03 多层推理

调整隐藏状态值

推理层: 自注意力机制对已嵌入的Token与该词所在单词表中的位置和与其他词的关系进行隐藏状态值调整。

隐藏状态值: 这一层调整的不是嵌入层标号的参数,那个参数嵌入后就已经固定了,它调整的是隐藏状态值。

图示如下

04 向量计算-最终预测

调整隐藏状态值

掌握规律: 通过推理层对整句提示词中的隐藏状态值调整完成后,就能得到token的整体走向趋势(规律)。

预测生成词: 根据已掌握的整体走向规律,会进行下一个生成词的预测,预测结果包含但不限于去搞概率的词。

预测生成词: 将选择的Token作为下一个Token加到句子中,然后又生成了一个新的一句话,重复上面的(1、2、3)步骤,直到大模型计算完了后面不需要有了,非常合理了,以'。'结束。

一图回顾

相关推荐
Robot侠18 小时前
视觉语言导航从入门到精通(三)
llm·transformer·vln·multi-modal llm
坐吃山猪18 小时前
AutoGLMPhone03-adb模块
adb·llm·glm
EdisonZhou19 小时前
MAF快速入门(7)工作流的状态共享
llm·aigc·agent·.net core
洛阳泰山19 小时前
快速上手 MaxKB4J:开源企业级智能知识库系统在 Sealos 上的完整部署指南
java·开源·llm·agent·rag
青衫客361 天前
浅谈 LightRAG —— 把“结构理解”前移到索引阶段的 RAG 新范式
大模型·llm·rag
破烂pan1 天前
模型推理加速技术全景解析:从基础优化到前沿创新
llm·模型加速
visnix1 天前
AI大模型-LLM原理剖析到训练微调实战(第二部分:大模型核心原理与Transformer架构)
前端·llm
智泊AI1 天前
重磅!小米刚刚发布新模型MiMo-V2-Flash开源了!
llm
骚戴2 天前
大语言模型(LLM)进阶:从闭源大模型 API 到开源大模型本地部署,四种接入路径全解析
java·人工智能·python·语言模型·自然语言处理·llm·开源大模型
stark张宇2 天前
别掉队!系统掌握 LLM 应用开发,这可能是你今年最值得投入的学习方向
人工智能·llm·agent