神经网络之特征值与特征向量

1. 定义

给定一个方阵 (A∈Rn×n)(A \in \mathbb{R}^{n \times n})(A∈Rn×n),如果存在一个非零向量 (v≠0)(v \neq 0)(v=0) 和一个标量 (λ)(\lambda)(λ),满足
Av=λv A v = \lambda v Av=λv

那么:

  • (v)(v)(v) 称为矩阵 (A)(A)(A) 的特征向量
  • (λ)(\lambda)(λ) 称为矩阵 (A)(A)(A) 的特征值

直观理解

特征向量是经过矩阵变换 (A)(A)(A) 后,只被拉伸或缩放,而不改变方向 的向量。

特征值就是这个拉伸/缩放的倍数。


2. 几何意义

  • 对称矩阵 (A)(A)(A) 可以看作一个线性变换:把空间中的向量映射到另一个向量。

  • 特征向量对应的是变换中保持方向不变的方向。

  • 特征值告诉我们沿这个方向的伸缩程度:

    • (∣λ∣>1)(|\lambda| > 1)(∣λ∣>1):向量被拉长
    • (0<∣λ∣<1)(0 < |\lambda| < 1)(0<∣λ∣<1):向量被缩短
    • (λ<0)(\lambda < 0)(λ<0):方向反向并缩放

例如:
A=[20 03],v1=[1 0], v2=[0 1] A = \begin{bmatrix} 2 & 0 \ 0 & 3 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 1 \ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} 0 \ 1 \end{bmatrix} A=[20 03],v1=[1 0], v2=[0 1]

这里:
Av1=2v1,Av2=3v2 A v_1 = 2 v_1, \quad A v_2 = 3 v_2 Av1=2v1,Av2=3v2

所以 (v1,v2)(v_1, v_2)(v1,v2) 是特征向量,2 和 3 是特征值。几何上就是 x 方向被拉伸 2 倍,y 方向被拉伸 3 倍。


3. 计算方法

  1. 写出特征方程:
    det⁡(A−λI)=0 \det(A - \lambda I) = 0 det(A−λI)=0

    这里 (I)(I)(I) 是单位矩阵。

  2. 解这个多项式方程得到 (λ1,λ2,...,λn)(\lambda_1, \lambda_2, \dots, \lambda_n)(λ1,λ2,...,λn)(特征值)。

  3. 对每个特征值 (λ)(\lambda)(λ),解线性方程组:
    (A−λI)v=0 (A - \lambda I)v = 0 (A−λI)v=0

    得到对应的特征向量 (v)(v)(v)。


4. 特点

  • (n×n)(n \times n)(n×n) 矩阵最多有 (n)(n)(n) 个特征值(可能有重根)。

  • 对称矩阵:

    • 特征值都是实数
    • 不同特征值对应的特征向量是正交的
相关推荐
Coder_Boy_3 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱5 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º6 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee8 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º9 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys9 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56789 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子9 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能10 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448710 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能