神经网络之特征值与特征向量

1. 定义

给定一个方阵 (A∈Rn×n)(A \in \mathbb{R}^{n \times n})(A∈Rn×n),如果存在一个非零向量 (v≠0)(v \neq 0)(v=0) 和一个标量 (λ)(\lambda)(λ),满足
Av=λv A v = \lambda v Av=λv

那么:

  • (v)(v)(v) 称为矩阵 (A)(A)(A) 的特征向量
  • (λ)(\lambda)(λ) 称为矩阵 (A)(A)(A) 的特征值

直观理解

特征向量是经过矩阵变换 (A)(A)(A) 后,只被拉伸或缩放,而不改变方向 的向量。

特征值就是这个拉伸/缩放的倍数。


2. 几何意义

  • 对称矩阵 (A)(A)(A) 可以看作一个线性变换:把空间中的向量映射到另一个向量。

  • 特征向量对应的是变换中保持方向不变的方向。

  • 特征值告诉我们沿这个方向的伸缩程度:

    • (∣λ∣>1)(|\lambda| > 1)(∣λ∣>1):向量被拉长
    • (0<∣λ∣<1)(0 < |\lambda| < 1)(0<∣λ∣<1):向量被缩短
    • (λ<0)(\lambda < 0)(λ<0):方向反向并缩放

例如:
A=[20 03],v1=[1 0], v2=[0 1] A = \begin{bmatrix} 2 & 0 \ 0 & 3 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 1 \ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} 0 \ 1 \end{bmatrix} A=[20 03],v1=[1 0], v2=[0 1]

这里:
Av1=2v1,Av2=3v2 A v_1 = 2 v_1, \quad A v_2 = 3 v_2 Av1=2v1,Av2=3v2

所以 (v1,v2)(v_1, v_2)(v1,v2) 是特征向量,2 和 3 是特征值。几何上就是 x 方向被拉伸 2 倍,y 方向被拉伸 3 倍。


3. 计算方法

  1. 写出特征方程:
    det⁡(A−λI)=0 \det(A - \lambda I) = 0 det(A−λI)=0

    这里 (I)(I)(I) 是单位矩阵。

  2. 解这个多项式方程得到 (λ1,λ2,...,λn)(\lambda_1, \lambda_2, \dots, \lambda_n)(λ1,λ2,...,λn)(特征值)。

  3. 对每个特征值 (λ)(\lambda)(λ),解线性方程组:
    (A−λI)v=0 (A - \lambda I)v = 0 (A−λI)v=0

    得到对应的特征向量 (v)(v)(v)。


4. 特点

  • (n×n)(n \times n)(n×n) 矩阵最多有 (n)(n)(n) 个特征值(可能有重根)。

  • 对称矩阵:

    • 特征值都是实数
    • 不同特征值对应的特征向量是正交的
相关推荐
peixiuhui23 分钟前
EdgeGateway 快速开始手册-表达式 Modbus 报文格式
人工智能·mqtt·边缘计算·iot·modbus tcp·iotgateway·modbus rtu
bing.shao1 小时前
golang 做AI任务执行
开发语言·人工智能·golang
鼎道开发者联盟1 小时前
2025中国AI开源生态报告发布,鼎道智联助力产业高质量发展
人工智能·开源·gui
贾维思基1 小时前
告别RPA和脚本!视觉推理Agent,下一代自动化的暴力解法
人工智能·agent
P-ShineBeam1 小时前
引导式问答-对话式商品搜索-TRACER
人工智能·语言模型·自然语言处理·知识图谱
j_jiajia1 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法
Hcoco_me2 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
OpenCSG2 小时前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习
阿里云大数据AI技术2 小时前
漫画说:为什么你的“增量计算”越跑越慢?——90%的实时数仓团队都踩过的坑,藏在这几格漫画里
大数据·人工智能
Gavin在路上2 小时前
SpringAIAlibaba之上下文工程与GraphRunnerContext 深度解析(8)
人工智能