目标检测2

1. 目标检测基本概念

定义:识别图片中的物体并定位其位置

多任务特性:位置定位 + 类别识别

主要挑战:

目标种类与数量繁多

目标尺度不均

遮挡、噪声等外部环境干扰

2. 主要数据集

VOC数据集

PASCAL VOC挑战赛数据集

4大类,20小类

VOC 2007: 9963张图片,24640个目标

VOC 2012: 23080张图片,54900个目标

COCO数据集

微软标注的MS COCO数据库

20万个图像,80个类别

超过50万个目标标注

平均每个图像7.2个目标

3. 标注格式

三种主要格式:

  1. YOLO(TXT):归一化的(x,y,w,h) - 中心点坐标和宽高

  2. VOC(XML):(Xmin,Ymin,Xmax,Ymax) - 左上角和右下角坐标

  3. COCO(JSON):(Xmin,Ymin,W,H) - 非归一化的左上角坐标和宽高

4. 评估指标

核心指标:

IoU(交并比):边界框正确性度量

Precision(准确率):查准率

Recall(召回率):查全率

P-R曲线:精度-召回率曲线

AP(Average Precision):平均精度

mAP(mean AP):各类别AP的均值

AP计算方法:

11点法:在召回率[0,1]区间取11个点计算平均精度

评估流程:IoU划分TP/FP → 按置信度排序 → 计算P/R → 绘制P-R曲线 → 计算AP

5. 检测方法演进

传统方法:

滑动窗口法:人工设计尺寸,大量冗余操作,定位不准确

深度学习方法:

Anchor-based方法:

使用anchor box描述目标

ratio + scale描述位置和形状

自顶向下,类似滑动窗口穷举

Anchor-free方法:

自底向上,自动生成

无需预设anchor过程

Two-stage算法:

经典发展线:R-CNN → SPP-Net → Fast R-CNN → Faster R-CNN

其他:Cascade R-CNN、Guided Anchoring

One-stage算法:

YOLO系列:v1-v5

SSD系列:SSD、DSSD、FSSD

其他:RefineDet

6. 关键技术

非极大值抑制(NMS):

  1. 设置置信度阈值(通常0.5)

  2. 按置信度降序排列候选框

  3. 选取最高置信度框加入输出列表

  4. 删除与选中框IoU大于阈值的候选框

  5. 重复直到候选框为空

相关推荐
想暴富,学技术13 分钟前
AI提示词学习基础(一)
人工智能·学习
萤丰信息30 分钟前
智慧园区:数字中国的“微缩实验室”如何重构城市未来
大数据·人工智能·科技·安全·重构·智慧园区
菠菠萝宝42 分钟前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
大模型真好玩1 小时前
低代码Agent开发框架使用指南(七)—Coze 数据库详解
人工智能·agent·coze
唐兴通个人1 小时前
金融保险银行营销AI数字化转型培训讲师培训老师唐兴通讲金融银保团队险年金险市场销售
大数据·人工智能
视界先声1 小时前
AIDAv2:重新定义DeFi的AI驱动金融基础设施
人工智能·金融
焦糖码奇朵、1 小时前
移动通信网络建设-实验2:5G站点选型与设备部署
网络·数据库·人工智能·5g·信号处理·基带工程
l1t1 小时前
把ITPUB newkid先生编写的Oracle语法数独求解SQL改写成DuckDB
数据库·人工智能·sql·oracle·duckdb
sugarzhangnotes2 小时前
四大AI相关平台特点分析与对比
人工智能
IT_陈寒2 小时前
SpringBoot性能优化实战:我从10万QPS项目中总结的7个核心技巧
前端·人工智能·后端