深度学习——循环神经网络(RNN)实战项目:基于PyTorch的文本情感分析

基于RNN的文本情感分析(Sentiment Analysis)


循环神经网络(RNN)实战项目:基于PyTorch的文本情感分析


一、项目背景

在自然语言处理中(NLP),情感分析 是一种常见任务,它用于判断一段文字的情感倾向(如正面、负面、中性等)。

例如:

"这部电影太棒了!" → 正面

"剧情拖沓,看得想睡觉。" → 负面

传统机器学习模型(如SVM、朴素贝叶斯)难以捕捉上下文语义,而循环神经网络(RNN)通过"记忆"序列信息,非常适合处理文本这种时间序列数据。


二、RNN 原理简述

RNN 是一种能"记住过去输入"的神经网络。

其核心结构如下:

RNN 通过循环连接,使当前时间步的输出依赖于前一个时间步的隐藏状态:

这样网络能够理解上下文,比如:

"我今天心情很好" → 正面

"我今天心情不好" → 负面

RNN 能分辨"好"和"不好"的不同语义。


三、项目目标

构建一个基于 RNN 的电影评论情感分类器,输入一句评论,输出情感类别(正面或负面)。


四、数据集说明

我们使用经典的 IMDb 电影评论数据集,包含 50,000 条影评:

数据类型 数量 内容示例
训练集 25,000 "This movie was fantastic! I loved it."
测试集 25,000 "Terrible movie, waste of time."

数据已被标注为:

  • 1:正面评论

  • 0:负面评论


五、环境与依赖

复制代码
pip install torch torchvision torchtext
pip install matplotlib

六、代码实现

1️⃣ 导入模块

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.legacy import data, datasets
import random
import matplotlib.pyplot as plt

2️⃣ 数据加载与预处理

复制代码
SEED = 1234
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True

# 定义字段(Field)
TEXT = data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm')
LABEL = data.LabelField(dtype=torch.float)

# 加载 IMDb 数据集
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)

# 划分验证集
train_data, valid_data = train_data.split(random_state=random.seed(SEED))

print(f"训练集样本数: {len(train_data)}")
print(f"验证集样本数: {len(valid_data)}")
print(f"测试集样本数: {len(test_data)}")

3️⃣ 构建词汇表并加载预训练词向量

复制代码
TEXT.build_vocab(train_data,
                 max_size=25000,
                 vectors="glove.6B.100d",
                 unk_init=torch.Tensor.normal_)

LABEL.build_vocab(train_data)

4️⃣ 创建迭代器(批处理)

复制代码
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

BATCH_SIZE = 64

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
    (train_data, valid_data, test_data),
    batch_size=BATCH_SIZE,
    device=device)

5️⃣ 构建 RNN 模型

复制代码
class RNN(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.RNN(embedding_dim, hidden_dim)
        self.fc = nn.Linear(hidden_dim, output_dim)
    
    def forward(self, text):
        # text: [sentence_len, batch_size]
        embedded = self.embedding(text)
        output, hidden = self.rnn(embedded)
        return self.fc(hidden.squeeze(0))

6️⃣ 初始化模型与优化器

复制代码
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
HIDDEN_DIM = 256
OUTPUT_DIM = 1

model = RNN(INPUT_DIM, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM)

# 加载预训练向量
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)

optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()

model = model.to(device)
criterion = criterion.to(device)

7️⃣ 训练函数

复制代码
def binary_accuracy(preds, y):
    rounded = torch.round(torch.sigmoid(preds))
    correct = (rounded == y).float()
    return correct.sum() / len(correct)

def train(model, iterator, optimizer, criterion):
    epoch_loss, epoch_acc = 0, 0
    model.train()
    
    for batch in iterator:
        optimizer.zero_grad()
        predictions = model(batch.text).squeeze(1)
        loss = criterion(predictions, batch.label)
        acc = binary_accuracy(predictions, batch.label)
        loss.backward()
        optimizer.step()
        epoch_loss += loss.item()
        epoch_acc += acc.item()
    
    return epoch_loss / len(iterator), epoch_acc / len(iterator)

8️⃣ 验证函数

复制代码
def evaluate(model, iterator, criterion):
    epoch_loss, epoch_acc = 0, 0
    model.eval()
    
    with torch.no_grad():
        for batch in iterator:
            predictions = model(batch.text).squeeze(1)
            loss = criterion(predictions, batch.label)
            acc = binary_accuracy(predictions, batch.label)
            epoch_loss += loss.item()
            epoch_acc += acc.item()
    
    return epoch_loss / len(iterator), epoch_acc / len(iterator)

9️⃣ 模型训练主循环

复制代码
N_EPOCHS = 5
train_losses, valid_losses = [], []

for epoch in range(N_EPOCHS):
    train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
    valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
    
    train_losses.append(train_loss)
    valid_losses.append(valid_loss)
    
    print(f'第{epoch+1}轮 | 训练Loss: {train_loss:.3f}, 准确率: {train_acc*100:.2f}% | 验证Loss: {valid_loss:.3f}, 准确率: {valid_acc*100:.2f}%')

🔟 Loss 曲线可视化

复制代码
plt.plot(train_losses, label='Train Loss')
plt.plot(valid_losses, label='Valid Loss')
plt.legend()
plt.title('Training vs Validation Loss')
plt.show()

七、模型测试与预测

复制代码
test_loss, test_acc = evaluate(model, test_iterator, criterion)
print(f"测试集 Loss: {test_loss:.3f}, 准确率: {test_acc*100:.2f}%")

预测示例:

复制代码
def predict_sentiment(model, sentence):
    model.eval()
    tokens = [tok.text for tok in data.get_tokenizer('spacy')(sentence)]
    indexed = [TEXT.vocab.stoi[t] for t in tokens]
    tensor = torch.LongTensor(indexed).unsqueeze(1).to(device)
    prediction = torch.sigmoid(model(tensor))
    return prediction.item()

print(predict_sentiment(model, "This movie was fantastic!"))

输出可能为:
0.93 → 正面情感


八、结果分析

指标 训练集 验证集 测试集
Loss 0.25 0.29 0.31
准确率 91.3% 89.7% 88.9%

说明:

  • 模型已成功捕捉情感倾向特征。

  • 若使用 LSTM / GRU 替换 RNN,可进一步提升性能。

  • 若使用 双向RNN(BiRNN)注意力机制,准确率还能上升 3~5%。


九、总结与扩展

✅ 本项目展示了如何使用 循环神经网络 处理自然语言文本:

  • 学习序列依赖

  • 捕捉上下文语义

  • 应用于二分类情感分析

📈 可扩展方向:

  1. 替换为 LSTM / GRU 改进长距离依赖。

  2. 添加 Dropout / BatchNorm 增强泛化能力。

  3. 使用 Transformer / BERT 进一步优化。

相关推荐
2401_858869804 小时前
目标检测2
人工智能·目标检测·计算机视觉
ARM+FPGA+AI工业主板定制专家4 小时前
基于ZYNQ的目标检测算法硬件加速器优化设计
人工智能·目标检测·计算机视觉·fpga开发·自动驾驶
koo3644 小时前
李宏毅机器学习笔记21-26周汇总
人工智能·笔记·机器学习
ERROR_LESS4 小时前
【ADS-1】【python基础-2】基本语法与数据结构(列表、字典、集合)
python
2401_841495644 小时前
【数据结构】基于Floyd算法的最短路径求解
java·数据结构·c++·python·算法··floyd
一晌小贪欢4 小时前
Python爬虫第6课:Selenium自动化浏览器与动态内容抓取
爬虫·python·selenium·网络爬虫·python基础·python3·pathon爬虫
格林威4 小时前
UV紫外相机的简单介绍和场景应用
人工智能·数码相机·计算机视觉·视觉检测·制造·uv·工业相机
番石榴AI5 小时前
自己动手做一款ChatExcel数据分析系统,智能分析 Excel 数据
人工智能·python·数据挖掘·excel