深度学习(13)-PyTorch 数据转换

在 PyTorch 中,数据转换是一种在加载数据时对数据进行处理的机制,将原始数据转换成适合模型训练的格式,主要通过 torchvision.transforms 提供的工具完成。

数据转换不仅可以实现基本的数据预处理(如归一化、大小调整等),还能帮助进行数据增强(如随机裁剪、翻转等),提高模型的泛化能力。

1. 为什么需要数据转换?

数据预处理

  • 调整数据格式、大小和范围,使其适合模型输入。
  • 例如,图像需要调整为固定大小、张量格式并归一化到 [0,1]。

数据增强

  • 在训练时对数据进行变换,以增加多样性。
  • 例如,通过随机旋转、翻转和裁剪增加数据样本的变种,避免过拟合。

灵活性

  • 通过定义一系列转换操作,可以动态地对数据进行处理,简化数据加载的复杂度。

在 PyTorch 中,torchvision.transforms 模块提供了多种用于图像处理的变换操作。

2. 基础变换操作

1. ToTensor

将 PIL 图像或 NumPy 数组转换为 PyTorch 张量。同时将像素值从 [0, 255] 归一化为 [0, 1]。

python 复制代码
from torchvision import transforms

transform = transforms.ToTensor()

2. Normalize

对数据进行标准化,使其符合特定的均值和标准差。通常用于图像数据,将其像素值归一化为零均值和单位方差。

python 复制代码
transform = transforms.Normalize(mean=[0.5], std=[0.5])  # 归一化到 [-1, 1]

3. Resize

调整图像的大小。

python 复制代码
transform = transforms.Resize((128, 128))  # 将图像调整为 128x128

4. CenterCrop

从图像中心裁剪指定大小的区域。

python 复制代码
transform = transforms.CenterCrop(128)  # 裁剪 128x128 的区域

3. 数据增强操作

1. RandomCrop

从图像中随机裁剪指定大小。

python 复制代码
transform = transforms.RandomCrop(128)

2. RandomHorizontalFlip

以一定概率水平翻转图像。

python 复制代码
transform = transforms.RandomHorizontalFlip(p=0.5)  # 50% 概率翻转

3. RandomRotation

随机旋转一定角度。

python 复制代码
transform = transforms.RandomRotation(degrees=30)  # 随机旋转 -30 到 +30 度

4. ColorJitter

随机改变图像的亮度、对比度、饱和度或色调。

python 复制代码
transform = transforms.ColorJitter(brightness=0.5, contrast=0.5)

4. 组合变换

通过 transforms.Compose 将多个变换组合起来。

python 复制代码
transform = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.RandomHorizontalFlip(p=0.5),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5], std=[0.5])
])

5. 自定义转换

如果 transforms 提供的功能无法满足需求,可以通过自定义类或函数实现。

python 复制代码
class CustomTransform:
    def __call__(self, x):
        # 这里可以自定义任何变换逻辑
        return x * 2

transform = CustomTransform()

6. 实例

1. 对图像数据集应用转换

加载 MNIST 数据集,并应用转换。

python 复制代码
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# 定义转换
transform = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5], std=[0.5])
])

# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)

# 使用 DataLoader
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)

# 查看转换后的数据
for images, labels in train_loader:
    print("图像张量大小:", images.size())  # [batch_size, 1, 128, 128]
    break

输出结果为:

python 复制代码
图像张量大小: torch.Size([32, 1, 128, 128])

2. 可视化转换效果

以下代码展示了原始数据和经过转换后的数据对比。

python 复制代码
import matplotlib.pyplot as plt
from torchvision import datasets
from torchvision import datasets, transforms


# 原始和增强后的图像可视化
transform_augment = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(30),
    transforms.ToTensor()
])

# 加载数据集
dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform_augment)

# 显示图像
def show_images(dataset):
    fig, axs = plt.subplots(1, 5, figsize=(15, 5))
    for i in range(5):
        image, label = dataset[i]
        axs[i].imshow(image.squeeze(0), cmap='gray')  # 将 (1, H, W) 转为 (H, W)
        axs[i].set_title(f"Label: {label}")
        axs[i].axis('off')
    plt.show()

show_images(dataset)
相关推荐
week_泽1 小时前
第4课:为什么记忆能力如此重要 - 学习笔记_4
人工智能·笔记·学习·ai agent
week_泽2 小时前
第6课:如何管理短期记忆和长期记忆 - 学习笔记_6
人工智能·笔记·学习·ai agent
之歆8 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派8 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词8 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3018 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578028 小时前
人工智能发展历史
人工智能
强盛小灵通专卖员9 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder9 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me9 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm