机器学习(10)L1 与 L2 正则化详解

在机器学习中,我们常常会遇到"过拟合"的问题。也就是说,模型在训练数据上表现得非常好,但在测试数据上却一塌糊涂。为了防止模型"记住"数据而不是"学习"规律,我们通常会在训练时加入一种约束,让模型不要太复杂------这就是正则化(Regularization)

这篇文章我们就来讲讲最常见的两种正则化:L1 正则化L2 正则化


一、什么是正则化?

在训练模型时,我们希望代价函数 J(w,b) 越小越好。

比如在线性回归中,代价函数是均方误差(MSE):

但如果我们只关注让误差变小,模型可能会把每个参数 wi​ 调得非常大,以尽量"贴合"所有样本。这样模型虽然在训练集上很准,但在新数据上容易失效。

于是我们在原有的代价函数后面加上一个"惩罚项",限制参数不能太大:

这里的 λ(lambda)叫做正则化系数,用于控制惩罚的强度。而"惩罚项"可以有不同的形式,于是就有了两种常见的正则化方式:L1 和 L2。


二、L1 正则化(Lasso Regularization)

L1 正则化的惩罚项是参数的绝对值之和:

这意味着,参数 wi​ 越大,惩罚越强。L1 的一个特别之处在于:它会让某些参数直接变成 0。 也就是说,它不仅能让模型更简单,还能起到特征选择的作用------把不重要的特征直接"删除"掉。

举个例子,假设我们在预测房价,特征包括:

  • 房屋面积(x₁)

  • 卧室数量(x₂)

  • 是否靠近地铁(x₃)

如果"卧室数量"这个特征对预测影响很小,L1 正则化在训练时可能会让它的权重 w2​ 收敛为 0,从而自动忽略掉它。

这就是 L1 常被用于"稀疏模型(Sparse Model)"的原因。


三、L2 正则化(Ridge Regularization)

L2 正则化的惩罚项是参数平方和的一半:

这里的惩罚项让模型在训练时"更平滑",即:

  • 不让某个参数特别大;

  • 但也不会让某个参数直接变成 0。

因此,L2 正则化的效果是让所有权重都"更小",但仍然保留在模型中。

举个例子,还是预测房价的场景,假设"卧室数量"的权重原本是 4,L2 正则化可能把它压缩到 1.2,而不是直接变成 0。这意味着模型仍然考虑了所有特征,只是弱化了它们的影响。


四、L1 与 L2 的主要区别

比较项 L1 正则化(Lasso) L2 正则化(Ridge)
惩罚项形式
几何形状 菱形约束区域 圆形约束区域
参数稀疏性 可以让部分参数=0(自动特征选择) 参数变小但不为0
适合场景 需要筛选特征、希望模型简洁 特征较多且都重要、希望模型稳定
数学性质 不连续(尖点) 连续光滑(易优化)

五、为什么 L1 会让参数变成 0?

原因在于 L1 的惩罚项不是光滑的

当你画出 L1 的几何约束(一个菱形)和损失函数的等高线(椭圆)时,两者的切点往往会出现在菱形的"尖角"上------也就是坐标轴上。

这意味着,某些权重 wi​ 恰好会被压到 0。

相比之下,L2 的约束是一个圆形,没有"尖角",所以参数只会变小,不会直接为 0。


六、直观理解:从几何角度看区别

想象二维参数空间中:

  • L2 正则化:

    约束区域是一个圆。椭圆形的代价函数等高线与圆相切时,最优点一般在圆弧上。

    → 所有参数都变小。

  • L1 正则化:

    约束区域是一个菱形。代价函数的等高线更容易与菱形的尖角相切。

    → 部分参数直接为 0。


七、实际应用建议

  1. 如果你希望模型自动挑选特征 ,用 L1 正则化(Lasso)

  2. 如果你希望模型更稳定、抗噪音能力强 ,用 L2 正则化(Ridge)

  3. 如果你想两者兼顾 ,可以使用 Elastic Net(弹性网络),它结合了 L1 和 L2 的优点:


八、总结

  • 正则化的核心目标是控制模型复杂度、避免过拟合

  • L1 通过"让参数变成 0"简化模型;

  • L2 通过"让参数变小"让模型更平滑。

  • 它们的差别虽然只是惩罚项形式不同,但带来的效果却截然不同。

相关推荐
纤纡.3 分钟前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派4 分钟前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追4 分钟前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能
2601_949593659 分钟前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能
●VON12 分钟前
CANN安全与隐私:从模型加固到数据合规的全栈防护实战
人工智能·安全
刘大大Leo18 分钟前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人21 分钟前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程28 分钟前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn
程序员清洒43 分钟前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island13141 小时前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构