【ROS2】驱动开发-雷达篇

雷达(Radar/Lidar)模块驱动,因为数据接口简单,低复杂度,在 ROS2 中常也是 以 Topic + 数据结构 的方式实现,也就是我们前面讲的ROS Wrapper方式。后面,我们将这种实现方式成为直接发送Topic 模式的驱动。

1. 什么是雷达

2. 什么是雷达模块

3. Radar和Lidar 的区别

4. 超声波模块 和雷达模块的区别

方面 超声波传感器(Ultrasonic Sensor) 雷达传感器(Radar Sensor)
工作原理 利用声波(通常 20 kHz ~ 40 kHz)发射和回波时间测距(Time-of-Flight,ToF)。传感器发射超声波脉冲,碰到物体后反射回传感器,通过计算声波传播时间求得距离。 利用电磁波(微波或毫米波,频率 24 GHz、77 GHz、或 79 GHz 等)发射和回波频移测距。通过发射波与回波的时延或多普勒频移,计算目标距离和相对速度。
测量类型 主要测量距离(绝对距离),部分高端模块可测速度但不常见。 可测距离和速度(相对运动),多普适合动态目标检测。
测量精度 精度一般在 ±1~3 mm(近距离),有效测量范围约 2 cm ~ 4 m。 精度受波长和信号处理影响,距离精度通常 1~10 cm,速度精度可达 cm/s 级别。
测量范围 短至中距离,通常 2~400 cm;受声波衰减影响,远距离测量困难。 中到远距离,典型汽车毫米波雷达可达 200 m 以上。
分辨率 / 波束宽度 波束较宽(一般 15° ~ 30°),容易受旁边障碍物干扰。 波束窄(几度到十几度可调),可分辨多个目标,抗干扰能力强。
对环境影响 对空气温度、湿度敏感;雨、风、软质物体(布料、泡沫)反射差,可能导致测量误差。 对气象环境适应性好(雨、雾、灰尘影响小);对金属、硬质物体反射效果最佳。
响应速度 中低速,适合静态或慢速目标。 高速动态目标检测能力强,适合车辆、无人机等高速场景。
硬件成本 低成本,常用于教育、机器人避障、简单测距。 高成本,常用于汽车 ADAS(辅助驾驶)、无人驾驶、工业检测。
典型应用 机器人避障、液位测量、物体存在检测、自动门开关、停车辅助低速探测。 汽车雷达(自适应巡航、盲点监测)、无人驾驶环境感知、工业物体测速、无人机避障。
接口与 ROS 使用 常通过 GPIO/ADC 接口连接 MCU/Raspberry Pi,ROS 中常通过 /ultrasonic/distance/ultrasonic/velocity topic 发布。 通常通过 CAN 总线、UART、USB 或以太网连接,ROS 中常通过 /radar/objects/radar/velocity 等 topic 或自定义消息发布。

雷达理论上能检测 1 m 内障碍物,但精度、盲区、最小测距限制都让它不如超声波直观可靠 。因此,常见做法是 1 m 内靠超声波,1 m 以上靠雷达。

相关推荐
谷粒.17 小时前
Cypress vs Playwright vs Selenium:现代Web自动化测试框架深度评测
java·前端·网络·人工智能·python·selenium·测试工具
CareyWYR1 天前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信1 天前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20091 天前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟1 天前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播1 天前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训1 天前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹1 天前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55181 天前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora1 天前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习