【ROS2】驱动开发-雷达篇

雷达(Radar/Lidar)模块驱动,因为数据接口简单,低复杂度,在 ROS2 中常也是 以 Topic + 数据结构 的方式实现,也就是我们前面讲的ROS Wrapper方式。后面,我们将这种实现方式成为直接发送Topic 模式的驱动。

1. 什么是雷达

2. 什么是雷达模块

3. Radar和Lidar 的区别

4. 超声波模块 和雷达模块的区别

方面 超声波传感器(Ultrasonic Sensor) 雷达传感器(Radar Sensor)
工作原理 利用声波(通常 20 kHz ~ 40 kHz)发射和回波时间测距(Time-of-Flight,ToF)。传感器发射超声波脉冲,碰到物体后反射回传感器,通过计算声波传播时间求得距离。 利用电磁波(微波或毫米波,频率 24 GHz、77 GHz、或 79 GHz 等)发射和回波频移测距。通过发射波与回波的时延或多普勒频移,计算目标距离和相对速度。
测量类型 主要测量距离(绝对距离),部分高端模块可测速度但不常见。 可测距离和速度(相对运动),多普适合动态目标检测。
测量精度 精度一般在 ±1~3 mm(近距离),有效测量范围约 2 cm ~ 4 m。 精度受波长和信号处理影响,距离精度通常 1~10 cm,速度精度可达 cm/s 级别。
测量范围 短至中距离,通常 2~400 cm;受声波衰减影响,远距离测量困难。 中到远距离,典型汽车毫米波雷达可达 200 m 以上。
分辨率 / 波束宽度 波束较宽(一般 15° ~ 30°),容易受旁边障碍物干扰。 波束窄(几度到十几度可调),可分辨多个目标,抗干扰能力强。
对环境影响 对空气温度、湿度敏感;雨、风、软质物体(布料、泡沫)反射差,可能导致测量误差。 对气象环境适应性好(雨、雾、灰尘影响小);对金属、硬质物体反射效果最佳。
响应速度 中低速,适合静态或慢速目标。 高速动态目标检测能力强,适合车辆、无人机等高速场景。
硬件成本 低成本,常用于教育、机器人避障、简单测距。 高成本,常用于汽车 ADAS(辅助驾驶)、无人驾驶、工业检测。
典型应用 机器人避障、液位测量、物体存在检测、自动门开关、停车辅助低速探测。 汽车雷达(自适应巡航、盲点监测)、无人驾驶环境感知、工业物体测速、无人机避障。
接口与 ROS 使用 常通过 GPIO/ADC 接口连接 MCU/Raspberry Pi,ROS 中常通过 /ultrasonic/distance/ultrasonic/velocity topic 发布。 通常通过 CAN 总线、UART、USB 或以太网连接,ROS 中常通过 /radar/objects/radar/velocity 等 topic 或自定义消息发布。

雷达理论上能检测 1 m 内障碍物,但精度、盲区、最小测距限制都让它不如超声波直观可靠 。因此,常见做法是 1 m 内靠超声波,1 m 以上靠雷达。

相关推荐
lzhdim9 分钟前
魅族手机介绍
人工智能·智能手机
Debroon11 分钟前
现代医疗中的AI智能体
人工智能
Winner130012 分钟前
查看rk3566摄像头设备、能力、支持格式
linux·网络·人工智能
shizhenshide24 分钟前
“绕过”与“破解”的成本账:自行研发、购买API与外包打码的性价比全分析
人工智能·验证码·recaptcha·ezcaptcha·recaptcha v2
龙腾亚太37 分钟前
大模型在工业物流领域有哪些应用
人工智能·具身智能·智能体·世界模型·智能体培训·具身智能培训
Deepoch1 小时前
智能清洁新纪元:Deepoc开发板如何重塑扫地机器人的“大脑“
人工智能·机器人·清洁机器人·具身模型·deepoc
装不满的克莱因瓶1 小时前
【Coze智能体实战二】一键生成儿歌背单词视频
人工智能·ai·实战·agent·工作流·智能体·coze
杰米不放弃1 小时前
AI大模型应用开发学习-26【20251227】
人工智能·学习
一个会的不多的人1 小时前
人工智能基础篇:概念性名词浅谈(第八讲)
人工智能·制造·数字化转型
weixin_446260851 小时前
Robin: AI驱动的暗网OSINT工具
人工智能