【数组】代码随想录 44.开发商购买土地

简单

描述:

在一个城市区域内,被划分成了n * m个连续的区块,每个区块都拥有不同的权值,代表着其土地价值。目前,有两家开发公司,A 公司和 B 公司,希望购买这个城市区域的土地。

现在,需要将这个城市区域的所有区块分配给 A 公司和 B 公司。

然而,由于城市规划的限制,只允许将区域按横向或纵向划分成两个子区域,而且每个子区域都必须包含一个或多个区块。 为了确保公平竞争,你需要找到一种分配方式,使得 A 公司和 B 公司各自的子区域内的土地总价值之差最小。

注意:区块不可再分。

输入描述:

  • 第一行输入两个正整数,代表 n 和 m。 接下来的 n 行,每行输出 m 个正整数。

输出描述:

  • 请输出一个整数,代表两个子区域内土地总价值之间的最小差距。

输入示例:

复制代码
3 3 
1 2 3 
2 1 3 
1 2 3

输出示例:

复制代码
0

数据范围:

  • 1 <= n, m <= 100;
  • n 和 m 不同时为 1

思路

看到本题,大家如果想暴力求解,应该是 n^3 的时间复杂度,

一个 for 枚举分割线, 嵌套 两个for 去累加区间里的和。

如果本题要求 任何两个行(或者列)之间的数值总和,大家在0058.区间和 的基础上 应该知道怎么求。

就是前缀和的思路,先统计好,前n行的和 q[n],如果要求矩阵 a行 到 b行 之间的总和,那么就 q[b] - q[a - 1]就好。

至于为什么是 a - 1,大家去看 0058.区间和 的分析,使用 前缀和 要注意 区间左右边的开闭情况。

本题也可以使用 前缀和的思路来求解,先将 行方向,和 列方向的和求出来,这样可以方便知道 划分的两个区间的和。

代码如下,时间复杂度: O(n^2):

cpp 复制代码
#include <iostream>
#include <vector>
#include <climits>

using namespace std;
int main () {
    int n, m;
    cin >> n >> m;
    int sum = 0;
    vector<vector<int>> vec(n, vector<int>(m, 0)) ;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> vec[i][j];
            sum += vec[i][j];
        }
    }
    // 统计横向
    vector<int> horizontal(n, 0);
    for (int i = 0; i < n; i++) {
        for (int j = 0 ; j < m; j++) {
            horizontal[i] += vec[i][j];
        }
    }
    // 统计纵向
    vector<int> vertical(m , 0);
    for (int j = 0; j < m; j++) {
        for (int i = 0 ; i < n; i++) {
            vertical[j] += vec[i][j];
        }
    }
    int result = INT_MAX;
    int horizontalCut = 0;
    for (int i = 0 ; i < n; i++) {
        horizontalCut += horizontal[i];
        result = min(result, abs(sum - horizontalCut - horizontalCut));
    }
    int verticalCut = 0;
    for (int j = 0; j < m; j++) {
        verticalCut += vertical[j];
        result = min(result, abs(sum - verticalCut - verticalCut));
    }
    cout << result << endl;
}

其实本题可以在暴力求解的基础上,优化一下,就不用前缀和了,在行向遍历的时候,遇到行末尾就统一一下, 在列向遍历的时候,遇到列末尾就统计一下。

时间复杂度也是 O(n^2)

代码如下:

cpp 复制代码
#include <iostream>
#include <vector>
#include <climits>

using namespace std;
int main () {
    int n, m;
    cin >> n >> m;
    int sum = 0;
    vector<vector<int>> vec(n, vector<int>(m, 0)) ;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> vec[i][j];
            sum += vec[i][j];
        }
    }

    int result = INT_MAX;
    int count = 0; // 统计遍历过的行
    for (int i = 0; i < n; i++) {
        for (int j = 0 ; j < m; j++) {
            count += vec[i][j];
            // 遍历到行末尾时候开始统计
            if (j == m - 1) result = min (result, abs(sum - count - count));

        }
    }

    count = 0; // 统计遍历过的列
    for (int j = 0; j < m; j++) {
        for (int i = 0 ; i < n; i++) {
            count += vec[i][j];
            // 遍历到列末尾的时候开始统计
            if (i == n - 1) result = min (result, abs(sum - count - count));
        }
    }
    cout << result << endl;
}
相关推荐
10岁的博客28 分钟前
二维差分算法高效解靶场问题
java·服务器·算法
轻微的风格艾丝凡29 分钟前
锂电池 SOC 估计技术综述:成熟算法、新颖突破与车企应用实践
算法·汽车
Codeking__31 分钟前
动态规划算法经典问题——01背包问题
算法·动态规划
R-G-B31 分钟前
归并排序 (BM20 数组中的逆序对)
数据结构·算法·排序算法
少许极端33 分钟前
算法奇妙屋(十二)-优先级队列(堆)
数据结构·算法·leetcode·优先级队列··图解算法
kupeThinkPoem1 小时前
哈希表有哪些算法?
数据结构·算法
小白程序员成长日记2 小时前
2025.11.16 力扣每日一题
算法
Kuo-Teng2 小时前
LeetCode 118: Pascal‘s Triangle
java·算法·leetcode·职场和发展·动态规划
Greedy Alg2 小时前
LeetCode 32. 最长有效括号(困难)
算法
ShineWinsu3 小时前
对于数据结构:链式二叉树的超详细保姆级解析—中
数据结构·c++·算法·面试·二叉树·校招·递归