【第五章:计算机视觉-项目实战之推荐/广告系统】2.粗排算法-(2)理解粗排模型之离线部分:双塔模型结构精讲及实现

第五章:计算机视觉-项目实战之推荐/广告系统

第二部分:粗排算法

第二节:理解粗排模型之离线部分:双塔模型结构精讲及实现


一、粗排在推荐系统中的位置:为什么它需要"双塔模型"?

回顾完整推荐系统流程:

召回 → 粗排 → 精排 → 重排 → 策略 → 展示

其中:

阶段 典型数量级 目标 典型模型
召回 1万~10万候选 保证召回覆盖面 Faiss / Milvus / i2i / u2i
粗排 几百~几千候选 快速筛掉明显不相关内容 双塔(Two-Tower / DSSM)
精排 50~200候选 细粒度评分 DNN / Wide&Deep / DIN / Transformer
重排 20~50候选 多目标+多样性 GBDT / Rank / 强化学习

粗排模型的核心目标只有一句话:

在极低延迟的前提下,让真正相关的内容尽可能排在前面。

因此粗排必须具备 3 个特点:

粗排需求 能力
高 QPS(百万级) 必须轻量推理
向量化检索 需要可 ANN 检索
用户实时性 & 物料稳定性解耦 用户变、物料不变

而双塔模型刚好满足全部要求,因此成为工业界粗排事实标准方案


二、双塔模型核心结构拆解(Two-Tower Architecture)

结构非常简单,可用一句话概括:

将用户和物料分别编码为向量,并在同一向量空间对齐,通过向量相似度衡量匹配分数。

如下图结构(示意图):

复制代码
   ┌──────────────────────┐        ┌──────────────────────┐
   │     User Tower       │        │      Item Tower      │
   │ Embedding + DNN      │        │  Embedding + DNN     │
   └───────┬──────────────┘        └─────────┬────────────┘
           │                                   │
      User Vector u                        Item Vector v
           │                                   │
           └─────────── Cosine / Dot ──────────┘
                       Matching Score

特点如下:

组件 作用
User Tower 建模用户兴趣(行为序列、性别、年龄、兴趣 Embedding)
Item Tower 建模物料语义(标题、分类、作者、Embedding)
Matching Space 将两塔向量映射到同一个语义空间
Similarity cos(u, v) / u·v 作为分数

粗排不追求强表达能力,而是追求快 & 稳定 & 易 ANN 检索,因此双塔非常适配。


三、训练样本构造与损失函数

双塔训练本质是对比学习(Contrastive Learning) ,最主流 Loss 为 InfoNCE,思想:

正样本相似度要高,负样本相似度要低。

训练样本格式:

user positive item negative items
U1 I_pos I_neg1, I_neg2, I_neg3...

Loss 公式(Batch 内共享负样本):

工业界中 90% 粗排都这么训练,原因是:

不需要额外负样本生成

Batch 内天然提供大量负样本

收敛快,鲁棒性高


四、可运行的 PyTorch 双塔粗排核心代码(可直接训练)

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class TwoTowerModel(nn.Module):
    def __init__(self, user_num, item_num, emb_dim=64):
        super().__init__()
        self.user_emb = nn.Embedding(user_num, emb_dim)
        self.item_emb = nn.Embedding(item_num, emb_dim)

    def forward(self, user_ids, pos_item_ids):
        u = self.user_emb(user_ids)           # [B, D]
        v = self.item_emb(pos_item_ids)       # [B, D]
        u = F.normalize(u, dim=-1)
        v = F.normalize(v, dim=-1)
        logits = torch.matmul(u, v.t())       # [B, B] 共享负样本
        labels = torch.arange(len(user_ids)).to(user_ids.device)
        loss = F.cross_entropy(logits, labels)
        return loss, u, v

训练循环:

python 复制代码
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
for batch in train_loader:
    loss, u, v = model(batch['user'], batch['item'])
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

训练完成后产出:

python 复制代码
user_emb.pt
item_emb.pt

这两份向量即可对接 ANN(Faiss / Milvus / HNSW)用于粗排检索。


五、粗排 ANN 召回衔接流程(离线 + 在线)

阶段 操作
离线 将所有 item embedding 建索引(Faiss/HNSW/Milvus)
在线 User embedding → TopK nearest item → 进入精排

伪代码:

python 复制代码
import faiss
index = faiss.IndexFlatIP(emb_dim)
index.add(item_emb_np)
scores, ids = index.search(user_emb_np, topk)

粗排返回 100~500 item,进入精排 → CTR/DIN 计算更精的点击相关度

这是工业界最稳定的两阶段结构。


六、双塔 vs DSSM vs 精排模型对比总结

模型 用途 特点
双塔(粗排主力) Matching 快、可 ANN、结构简单
DSSM 召回 多用于语义匹配,结构更深
精排 DNN/DIN Scoring 单路模型,表达强但慢

一句话总结:

双塔不是最强的模型,但在粗排阶段它一定是最合适的模型。


七、本节总结

你现在已经理解了 状态
粗排为什么存在
为什么双塔是粗排最佳方案
双塔结构、Loss、训练逻辑
PyTorch实现
如何与 ANN 连上,进入工业流水线
相关推荐
茉莉玫瑰花茶3 小时前
贪心 - 后篇
算法
m0_748233643 小时前
【C++篇】C++11入门:踏入C++新世界的大门
java·c++·算法
AI小云3 小时前
【Python高级编程】类属性与类方法
人工智能·python
Chef_Chen3 小时前
数据科学每日总结--Day4--数据挖掘
人工智能·数据挖掘
lxmyzzs3 小时前
【图像算法 - 31】基于深度学习的太阳能板缺陷检测系统:YOLOv12 + UI界面 + 数据集实现
人工智能·深度学习·算法·yolo·缺陷检测
lxmyzzs3 小时前
【图像算法 - 32】基于深度学习的风力发电设备缺陷检测系统:YOLOv12 + UI界面 + 数据集实现
深度学习·算法·yolo·计算机视觉
上官胡闹3 小时前
基于vLLM的PaddleOCR-VL部署指南
人工智能·百度飞桨
B站计算机毕业设计之家4 小时前
深度学习:YOLOv8人体行为动作识别检测系统 行为识别检测识系统 act-dataset数据集 pyqt5 机器学习✅
人工智能·python·深度学习·qt·yolo·机器学习·计算机视觉
on_pluto_4 小时前
GAN生成对抗网络学习-例子:生成逼真手写数字图
人工智能·深度学习·神经网络·学习·算法·机器学习·生成对抗网络