【第五章:计算机视觉-项目实战之推荐/广告系统】2.粗排算法-(2)理解粗排模型之离线部分:双塔模型结构精讲及实现

第五章:计算机视觉-项目实战之推荐/广告系统

第二部分:粗排算法

第二节:理解粗排模型之离线部分:双塔模型结构精讲及实现


一、粗排在推荐系统中的位置:为什么它需要"双塔模型"?

回顾完整推荐系统流程:

召回 → 粗排 → 精排 → 重排 → 策略 → 展示

其中:

阶段 典型数量级 目标 典型模型
召回 1万~10万候选 保证召回覆盖面 Faiss / Milvus / i2i / u2i
粗排 几百~几千候选 快速筛掉明显不相关内容 双塔(Two-Tower / DSSM)
精排 50~200候选 细粒度评分 DNN / Wide&Deep / DIN / Transformer
重排 20~50候选 多目标+多样性 GBDT / Rank / 强化学习

粗排模型的核心目标只有一句话:

在极低延迟的前提下,让真正相关的内容尽可能排在前面。

因此粗排必须具备 3 个特点:

粗排需求 能力
高 QPS(百万级) 必须轻量推理
向量化检索 需要可 ANN 检索
用户实时性 & 物料稳定性解耦 用户变、物料不变

而双塔模型刚好满足全部要求,因此成为工业界粗排事实标准方案


二、双塔模型核心结构拆解(Two-Tower Architecture)

结构非常简单,可用一句话概括:

将用户和物料分别编码为向量,并在同一向量空间对齐,通过向量相似度衡量匹配分数。

如下图结构(示意图):

复制代码
   ┌──────────────────────┐        ┌──────────────────────┐
   │     User Tower       │        │      Item Tower      │
   │ Embedding + DNN      │        │  Embedding + DNN     │
   └───────┬──────────────┘        └─────────┬────────────┘
           │                                   │
      User Vector u                        Item Vector v
           │                                   │
           └─────────── Cosine / Dot ──────────┘
                       Matching Score

特点如下:

组件 作用
User Tower 建模用户兴趣(行为序列、性别、年龄、兴趣 Embedding)
Item Tower 建模物料语义(标题、分类、作者、Embedding)
Matching Space 将两塔向量映射到同一个语义空间
Similarity cos(u, v) / u·v 作为分数

粗排不追求强表达能力,而是追求快 & 稳定 & 易 ANN 检索,因此双塔非常适配。


三、训练样本构造与损失函数

双塔训练本质是对比学习(Contrastive Learning) ,最主流 Loss 为 InfoNCE,思想:

正样本相似度要高,负样本相似度要低。

训练样本格式:

user positive item negative items
U1 I_pos I_neg1, I_neg2, I_neg3...

Loss 公式(Batch 内共享负样本):

工业界中 90% 粗排都这么训练,原因是:

不需要额外负样本生成

Batch 内天然提供大量负样本

收敛快,鲁棒性高


四、可运行的 PyTorch 双塔粗排核心代码(可直接训练)

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class TwoTowerModel(nn.Module):
    def __init__(self, user_num, item_num, emb_dim=64):
        super().__init__()
        self.user_emb = nn.Embedding(user_num, emb_dim)
        self.item_emb = nn.Embedding(item_num, emb_dim)

    def forward(self, user_ids, pos_item_ids):
        u = self.user_emb(user_ids)           # [B, D]
        v = self.item_emb(pos_item_ids)       # [B, D]
        u = F.normalize(u, dim=-1)
        v = F.normalize(v, dim=-1)
        logits = torch.matmul(u, v.t())       # [B, B] 共享负样本
        labels = torch.arange(len(user_ids)).to(user_ids.device)
        loss = F.cross_entropy(logits, labels)
        return loss, u, v

训练循环:

python 复制代码
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
for batch in train_loader:
    loss, u, v = model(batch['user'], batch['item'])
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

训练完成后产出:

python 复制代码
user_emb.pt
item_emb.pt

这两份向量即可对接 ANN(Faiss / Milvus / HNSW)用于粗排检索。


五、粗排 ANN 召回衔接流程(离线 + 在线)

阶段 操作
离线 将所有 item embedding 建索引(Faiss/HNSW/Milvus)
在线 User embedding → TopK nearest item → 进入精排

伪代码:

python 复制代码
import faiss
index = faiss.IndexFlatIP(emb_dim)
index.add(item_emb_np)
scores, ids = index.search(user_emb_np, topk)

粗排返回 100~500 item,进入精排 → CTR/DIN 计算更精的点击相关度

这是工业界最稳定的两阶段结构。


六、双塔 vs DSSM vs 精排模型对比总结

模型 用途 特点
双塔(粗排主力) Matching 快、可 ANN、结构简单
DSSM 召回 多用于语义匹配,结构更深
精排 DNN/DIN Scoring 单路模型,表达强但慢

一句话总结:

双塔不是最强的模型,但在粗排阶段它一定是最合适的模型。


七、本节总结

你现在已经理解了 状态
粗排为什么存在
为什么双塔是粗排最佳方案
双塔结构、Loss、训练逻辑
PyTorch实现
如何与 ANN 连上,进入工业流水线
相关推荐
智驱力人工智能1 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144871 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile1 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥2 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7252 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h2 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路2 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿2 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue612312312 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘