注:该文用于个人学习记录和知识交流,如有不足,欢迎指点。
性能测试:向百度服务器发送多个http请求,对比所有响应完成需要的时间
一、半夜测的(网络通畅)
1000 个请求
common_http_client

nty_http_client
创建1000个协程
(没有问题)

二、白天测的
650个请求
1. common_http_client.c
(没问题)

2. thread_http_client.c
构建650个线程
(没问题)

3. nty_http_client.c
构建650个协程
(没问题)

1000 个 请求
1. common_http_client.c
(没有问题:均受到响应长度为8191字节)

2. thread_http_client.c
构建1000个线程
(有问题:一些临近最后的请求收到0个字节的响应)

3. nty_http_client.c
构建1000个协程
(有问题:一些临近最后的请求收到0个字节的响应,之前半夜测的那次好像是没这个情况的!!!)


三、对比结果
在IO密集型场景中:
传统的一请求一接收的同步编程方式效率低的可怜!!!
协程与线程:
- 协程的效率跟线程已经很接近了(甚至超过线程)。
- 重要的是协程在高并发级别的时候可以做到一fd一协程(KB级别),但是线程却不可以(MB级别)。
四、相关测试代码
1. common_http_client.c
cpp
#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#define MAX_REQUESTS 650
#define BUFFER_SIZE 8192
#define SERVER_IP "183.240.99.58" // 百度的IP地址
#define SERVER_PORT 80 // HTTP默认端口
int count = 0; // 请求成功数
// HTTP请求参数与结果
typedef struct
{
int n; // 请求序号
const char *host; // 服务器IP或域名
int port; // 端口(HTTP默认80)
const char *path; // 请求路径(如"/index.html")
char response[8192]; // 存储响应数据
int resp_len; // 响应长度
int error; // 错误码(0表示成功)
} HTTPRequest;
// 协程函数:处理单个HTTP请求
void http_request(void *arg)
{
HTTPRequest *req = (HTTPRequest *)arg;
req->error = 0; // 初始化错误码
// 1. 创建非阻塞socket(库自动设置O_NONBLOCK)
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
{
req->error = -1;
printf("请求 %s:%d 失败:创建socket失败\n", req->host, req->port);
return;
}
// 2. 解析服务器地址(简化示例:直接用IP,实际可加域名解析)
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(req->port);
if (inet_pton(AF_INET, req->host, &addr.sin_addr) <= 0)
{
req->error = -2;
printf("请求 %s:%d 失败:无效IP\n", req->host, req->port);
close(sockfd);
return;
}
if (connect(sockfd, (struct sockaddr *)&addr, sizeof(addr)) < 0)
{
req->error = -3;
printf("请求 %s:%d 失败:连接超时/拒绝\n", req->host, req->port);
close(sockfd);
return;
}
char http_req[1024];
snprintf(http_req, sizeof(http_req),
"GET %s HTTP/1.1\r\n"
"Host: %s:%d\r\n"
"Connection: close\r\n\r\n",
req->path, req->host, req->port);
// 5. 发送请求(IO等待时协程自动挂起)
ssize_t send_len = send(sockfd, http_req, strlen(http_req), 0);
if (send_len <= 0)
{
req->error = -4;
printf("请求 %s:%d 失败:发送数据失败\n", req->host, req->port);
close(sockfd);
return;
}
// 6. 接收响应(IO等待时协程自动挂起,循环读取完整响应)
req->resp_len = 0;
while (1)
{
ssize_t recv_len = recv(sockfd,
req->response + req->resp_len,
sizeof(req->response) - req->resp_len - 1,
0); // recv是阻塞的,但是不用担心挑不出循环,因为服务器发完响应之后就会关闭连接,从而使得recv返回0,跳出循环。
// sizeof(req->response) - req->resp_len - 1 = 0 的时候recv_len也会返回0,也会跳出循环。
if (recv_len <= 0)
{
break; // 连接关闭或出错或buffer满了,退出循环
}
req->resp_len += recv_len;
}
req->response[req->resp_len] = '\0'; // 字符串结尾
// 7. 关闭连接,标记成功
close(sockfd);
printf("请求 %d 完成,响应长度:%d字节\n",
req->n, req->resp_len);
count++;
}
HTTPRequest *HTTPRequest_init(int n)
{
if (n <= 0)
{
fprintf(stderr, "无效的大小(必须为正数)\n");
return NULL;
}
// 2. 动态分配n个HTTPRequest的内存
HTTPRequest *reqs = (HTTPRequest *)malloc(n * sizeof(HTTPRequest));
if (reqs == NULL)
{ // 检查分配是否成功
perror("内存分配失败");
return NULL;
}
// 3. 初始化每个元素(替代原来的静态初始化列表)
for (int i = 0; i < n; i++)
{
reqs[i].host = SERVER_IP;
reqs[i].port = SERVER_PORT;
reqs[i].path = "/";
reqs[i].n = i + 1; // 设置请求序号
}
return reqs;
}
int main()
{
// 定义n个不同的HTTP请求(可扩展为更多),这里均为百度,模拟同时向百度发送三个http请求
HTTPRequest *reqs = HTTPRequest_init(MAX_REQUESTS);
for (int i = 0; i < MAX_REQUESTS; i++)
{
http_request(&reqs[i]);
}
free(reqs);
if (count == MAX_REQUESTS)
{
printf("所有请求均已成功完成!, 请求数为 %d\n", count);
}
else
{
printf("部分请求未完成,成功请求数:%d\n", count);
}
return 0;
}
2. thread_pool.h
cpp
#ifndef THREAD_POOL_H
#define THREAD_POOL_H
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <pthread.h>
#define LIST_INSERT(item, list) \
do \
{ \
item->prev = NULL; \
item->next = list; \
if ((list) != NULL) \
(list)->prev = item; \
(list) = item; \
} while (0)
#define LIST_REMOVE(item, list) \
do \
{ \
if (item->prev != NULL) \
item->prev->next = item->next; \
if (item->next != NULL) \
item->next->prev = item->prev; \
if (list == item) \
list = item->next; \
item->prev = item->next = NULL; \
} while (0)
struct nTask
{
void (*task_func)(void *task);
void *user_data;
void (*cleanup_func)(void *task); // 任务清理函数
struct nTask *prev;
struct nTask *next;
};
struct nWorker
{
pthread_t threadid;
int terminate;
struct nManager *manager;
struct nWorker *prev;
struct nWorker *next;
};
typedef struct nManager
{
struct nTask *tasks;
struct nWorker *workers;
int worker_count;
int is_shutdown;
pthread_mutex_t mutex;
pthread_cond_t cond;
} ThreadPool;
// callback != task
static void *nThreadPoolCallback(void *arg)
{
struct nWorker *worker = (struct nWorker *)arg;
while (1)
{
pthread_mutex_lock(&worker->manager->mutex);
while (worker->manager->tasks == NULL)
{
if (worker->terminate)
break;
pthread_cond_wait(&worker->manager->cond, &worker->manager->mutex);
}
if (worker->terminate)
{
pthread_mutex_unlock(&worker->manager->mutex);
break;
}
struct nTask *task = worker->manager->tasks;
LIST_REMOVE(task, worker->manager->tasks);
pthread_mutex_unlock(&worker->manager->mutex);
task->task_func(task);
if (task == NULL)
continue;
if (task->cleanup_func)
task->cleanup_func(task); // 自定义清理函数
else
{
if (task->user_data)
{
free(task->user_data);
}
free(task);
}
}
pthread_mutex_lock(&worker->manager->mutex);
worker->manager->worker_count--;
pthread_cond_signal(&worker->manager->cond);
pthread_mutex_unlock(&worker->manager->mutex);
free(worker);
}
// API
int nThreadPoolCreate(ThreadPool *pool, int numWorkers)
{
if (pool == NULL)
return -1;
if (numWorkers < 1)
numWorkers = 1;
memset(pool, 0, sizeof(ThreadPool));
pthread_cond_t blank_cond = PTHREAD_COND_INITIALIZER;
memcpy(&pool->cond, &blank_cond, sizeof(pthread_cond_t));
// pthread_mutex_init(&pool->mutex, NULL);
pthread_mutex_t blank_mutex = PTHREAD_MUTEX_INITIALIZER;
memcpy(&pool->mutex, &blank_mutex, sizeof(pthread_mutex_t));
int i = 0;
for (i = 0; i < numWorkers; i++)
{
struct nWorker *worker = (struct nWorker *)malloc(sizeof(struct nWorker));
if (worker == NULL)
{
perror("malloc");
return -2;
}
memset(worker, 0, sizeof(struct nWorker));
worker->manager = pool; //
int ret = pthread_create(&worker->threadid, NULL, nThreadPoolCallback, worker);
if (ret)
{
perror("pthread_create");
free(worker);
return -3;
}
LIST_INSERT(worker, pool->workers);
pool->worker_count++;
}
// success
return 0;
}
// API
int nThreadPoolDestory(ThreadPool *pool)
{
if (pool == NULL)
{
return -1;
}
// 如果已经关闭,直接返回
if (pool->is_shutdown)
{
return 0;
}
pthread_mutex_lock(&pool->mutex);
// 标记线程池为已关闭
pool->is_shutdown = 1;
// 标记所有工作线程为终止状态
struct nWorker *worker = NULL;
for (worker = pool->workers; worker != NULL; worker = worker->next)
{
worker->terminate = 1;
}
// 唤醒所有等待的工作线程
pthread_cond_broadcast(&pool->cond);
// 等待所有工作线程结束
while (pool->worker_count > 0)
{
pthread_cond_wait(&pool->cond, &pool->mutex);
}
// 清理剩余任务
struct nTask *task = NULL, *next_task = NULL;
for (task = pool->tasks; task != NULL; task = next_task)
{
next_task = task->next;
if (task->cleanup_func)
task->cleanup_func(task); // 自定义清理函数
else
{
if (task->user_data)
{
free(task->user_data);
}
free(task);
}
}
// 清理互斥锁和条件变量
pthread_mutex_unlock(&pool->mutex);
pthread_mutex_destroy(&pool->mutex);
pthread_cond_destroy(&pool->cond);
// 清空指针
pool->workers = NULL;
pool->tasks = NULL;
return 0;
}
// API
int nThreadPoolPushTask(ThreadPool *pool, struct nTask *task)
{
pthread_mutex_lock(&pool->mutex);
LIST_INSERT(task, pool->tasks);
pthread_cond_signal(&pool->cond);
pthread_mutex_unlock(&pool->mutex);
}
#endif // THREAD_POOL_H
3. thread_http_client.c
cpp
#include "thread_pool.h"
#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/time.h>
// 获取当前毫秒时间
int64_t current_ms()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000 + tv.tv_usec / 1000;
}
#define MAX_REQUESTS 1000
#define BUFFER_SIZE 8192
#define SERVER_IP "183.240.99.58" // 百度的IP地址
#define SERVER_PORT 80 // HTTP默认端口
int count = 0; // 请求成功数
// HTTP请求参数与结果
typedef struct
{
int n; // 请求序号
const char *host; // 服务器IP或域名
int port; // 端口(HTTP默认80)
const char *path; // 请求路径(如"/index.html")
char response[8192]; // 存储响应数据
int resp_len; // 响应长度
int error; // 错误码(0表示成功)
} HTTPRequest;
// 协程函数:处理单个HTTP请求
void http_request(void *arg)
{
struct nTask *task = (struct nTask *)arg;
HTTPRequest *req = (HTTPRequest *)(task->user_data);
req->error = 0; // 初始化错误码
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
{
req->error = -1;
printf("请求 %s:%d 失败:创建socket失败\n", req->host, req->port);
return;
}
// 2. 解析服务器地址(简化示例:直接用IP,实际可加域名解析)
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(req->port);
if (inet_pton(AF_INET, req->host, &addr.sin_addr) <= 0)
{
req->error = -2;
printf("请求 %s:%d 失败:无效IP\n", req->host, req->port);
close(sockfd);
return;
}
if (connect(sockfd, (struct sockaddr *)&addr, sizeof(addr)) < 0)
{
req->error = -3;
printf("请求 %s:%d 失败:连接超时/拒绝\n", req->host, req->port);
close(sockfd);
return;
}
char http_req[1024];
snprintf(http_req, sizeof(http_req),
"GET %s HTTP/1.1\r\n"
"Host: %s:%d\r\n"
"Connection: close\r\n\r\n",
req->path, req->host, req->port);
// 5. 发送请求(IO等待时协程自动挂起)
ssize_t send_len = send(sockfd, http_req, strlen(http_req), 0);
if (send_len <= 0)
{
req->error = -4;
printf("请求 %s:%d 失败:发送数据失败\n", req->host, req->port);
close(sockfd);
return;
}
// 6. 接收响应(IO等待时协程自动挂起,循环读取完整响应)
req->resp_len = 0;
while (1)
{
ssize_t recv_len = recv(sockfd,
req->response + req->resp_len,
sizeof(req->response) - req->resp_len - 1,
0); // recv是阻塞的,但是不用担心挑不出循环,因为服务器发完响应之后就会关闭连接,从而使得recv返回0,跳出循环。
// sizeof(req->response) - req->resp_len - 1 = 0 的时候recv_len也会返回0,也会跳出循环。
if (recv_len <= 0)
{
break; // 连接关闭或出错或buffer满了,退出循环
}
req->resp_len += recv_len;
}
req->response[req->resp_len] = '\0'; // 字符串结尾
// 7. 关闭连接,标记成功
close(sockfd);
printf("请求 %d 完成,响应长度:%d字节\n",
req->n, req->resp_len);
count++;
}
HTTPRequest *HTTPRequest_init(int n)
{
if (n <= 0)
{
fprintf(stderr, "无效的大小(必须为正数)\n");
return NULL;
}
// 2. 动态分配n个HTTPRequest的内存
HTTPRequest *reqs = (HTTPRequest *)malloc(n * sizeof(HTTPRequest));
if (reqs == NULL)
{ // 检查分配是否成功
perror("内存分配失败");
return NULL;
}
// 3. 初始化每个元素(替代原来的静态初始化列表)
for (int i = 0; i < n; i++)
{
reqs[i].host = SERVER_IP;
reqs[i].port = SERVER_PORT;
reqs[i].path = "/";
reqs[i].n = i + 1; // 设置请求序号
}
return reqs;
}
void free_task(void *arg)
{
struct nTask *task = (struct nTask *)arg;
if (task == NULL)
return;
/*
reqs 是 malloc(n * sizeof(HTTPRequest)) 分配的数组整体,元素是数组的一部分,不能单独 free 某个元素。
这样会触发「释放非堆内存」错误,导致程序崩溃,正确做法是在所有任务完成后 free(reqs),而非单个元素释放。
if (task->user_data)
{
free(task->user_data);
}
*/
free(task);
}
int main()
{
ThreadPool pool = {0};
nThreadPoolCreate(&pool, MAX_REQUESTS);
int64_t start_time = current_ms();
// 定义n个不同的HTTP请求(可扩展为更多),这里均为百度,模拟同时向百度发送三个http请求
HTTPRequest *reqs = HTTPRequest_init(MAX_REQUESTS);
for (int i = 0; i < MAX_REQUESTS; i++)
{
struct nTask *task = (struct nTask *)malloc(sizeof(struct nTask));
if (task == NULL)
{
perror("malloc");
exit(1);
}
memset(task, 0, sizeof(struct nTask));
task->task_func = http_request;
task->user_data = &reqs[i];
task->cleanup_func = free_task;
nThreadPoolPushTask(&pool, task);
}
// 等待所有任务完成
while (pool.tasks != NULL)
{
}
nThreadPoolDestory(&pool);
free(reqs);
if (count == MAX_REQUESTS)
{
printf("所有请求均已成功完成!, 请求数为 %d\n", count);
}
else
{
printf("部分请求未完成,成功请求数:%d\n", count);
}
int64_t end_time = current_ms();
printf("总耗时(不含线程池的创建时间):%ld ms\n", (end_time - start_time));
return 0;
}
4. nty_http_client.c
cpp
#include "../core/nty_coroutine.h"
#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#define MAX_REQUESTS 1000
#define BUFFER_SIZE 8192
#define SERVER_IP "183.240.99.58" // 百度的IP地址
#define SERVER_PORT 80 // HTTP默认端口
int count = 0; // 请求成功数
// HTTP请求参数与结果
typedef struct
{
int n; // 请求序号
const char *host; // 服务器IP或域名
int port; // 端口(HTTP默认80)
const char *path; // 请求路径(如"/index.html")
char response[8192]; // 存储响应数据
int resp_len; // 响应长度
int error; // 错误码(0表示成功)
} HTTPRequest;
// 协程函数:处理单个HTTP请求
void http_request_coroutine(void *arg)
{
HTTPRequest *req = (HTTPRequest *)arg;
req->error = 0; // 初始化错误码
// 1. 创建非阻塞socket(库自动设置O_NONBLOCK)
int sockfd = nty_socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
{
req->error = -1;
printf("请求 %s:%d 失败:创建socket失败\n", req->host, req->port);
return;
}
// 2. 解析服务器地址(简化示例:直接用IP,实际可加域名解析)
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(req->port);
if (inet_pton(AF_INET, req->host, &addr.sin_addr) <= 0)
{
req->error = -2;
printf("请求 %s:%d 失败:无效IP\n", req->host, req->port);
nty_close(sockfd);
return;
}
// 3. 连接服务器(IO等待时协程自动挂起)
if (nty_connect(sockfd, (struct sockaddr *)&addr, sizeof(addr)) < 0)
{
req->error = -3;
printf("请求 %s:%d 失败:连接超时/拒绝\n", req->host, req->port);
nty_close(sockfd);
return;
}
// 4. 构造HTTP GET请求报文
char http_req[1024];
snprintf(http_req, sizeof(http_req),
"GET %s HTTP/1.1\r\n"
"Host: %s:%d\r\n"
"Connection: close\r\n\r\n",
req->path, req->host, req->port);
// 5. 发送请求(IO等待时协程自动挂起)
ssize_t send_len = nty_send(sockfd, http_req, strlen(http_req), 0);
if (send_len <= 0)
{
req->error = -4;
printf("请求 %s:%d 失败:发送数据失败\n", req->host, req->port);
nty_close(sockfd);
return;
}
// 6. 接收响应(IO等待时协程自动挂起,循环读取完整响应)
req->resp_len = 0;
while (1)
{
ssize_t recv_len = nty_recv(sockfd,
req->response + req->resp_len,
sizeof(req->response) - req->resp_len - 1,
0); // 注意nty_recv默认是阻塞的, 但是不用担心协程一直挂起,因为服务器发完响应之后就会关闭连接,从而使得recv返回0,跳出循环。
// sizeof(req->response) - req->resp_len - 1 = 0 的时候recv_len也会返回0,也会跳出循环。
if (recv_len <= 0)
{
break; // 连接关闭或出错或buffer满了,退出循环
}
req->resp_len += recv_len;
}
req->response[req->resp_len] = '\0'; // 字符串结尾
// 7. 关闭连接,标记成功
nty_close(sockfd);
printf("请求 %d 完成,响应长度:%d字节\n",
req->n, req->resp_len);
count++;
}
HTTPRequest *HTTPRequest_init(int n)
{
if (n <= 0)
{
fprintf(stderr, "无效的大小(必须为正数)\n");
return NULL;
}
// 2. 动态分配n个HTTPRequest的内存
HTTPRequest *reqs = (HTTPRequest *)malloc(n * sizeof(HTTPRequest));
if (reqs == NULL)
{ // 检查分配是否成功
perror("内存分配失败");
return NULL;
}
// 3. 初始化每个元素(替代原来的静态初始化列表)
for (int i = 0; i < n; i++)
{
reqs[i].host = SERVER_IP;
reqs[i].port = SERVER_PORT;
reqs[i].path = "/";
reqs[i].n = i + 1; // 设置请求序号
}
return reqs;
}
int main()
{
// 定义n个不同的HTTP请求(可扩展为更多),这里均为百度,模拟同时向百度发送三个http请求
HTTPRequest *reqs = HTTPRequest_init(MAX_REQUESTS);
// 为每个请求创建协程
nty_coroutine *cos[MAX_REQUESTS];
for (int i = 0; i < MAX_REQUESTS; i++)
{
int ret = nty_coroutine_create(&cos[i], http_request_coroutine, &reqs[i]);
if (ret != 0)
{
printf("创建协程失败:%d\n", i);
return -1;
}
}
// 启动调度器,自动管理所有协程的并发执行
nty_schedule_run();
free(reqs);
if (count == MAX_REQUESTS)
{
printf("所有请求均已成功完成!, 请求数为 %d\n", count);
}
else
{
printf("部分请求未完成,成功请求数:%d\n", count);
}
return 0;
}