机器学习库的决策树绘制

使用graphviz绘制决策树更好一点,可以避免节点重叠,并且导出的pdf属于非图片型pdf。

绘制决策树大体分为3个步骤:

1.准备数据

2.创建并训练决策树模型

3.设置决策树参数绘制决策树

示例代码如下:

python 复制代码
from sklearn import tree
import graphviz

#1.准备数据
x=[[2, 0, 0, 2],
   [2, 1, 1, 0],
   [2, 1, 1, 2],
   [2, 1, 1, 1],
   [2, 0, 1, 0],
   [2, 0, 1, 1],
   [2, 0, 0, 1],
   [0, 1, 1, 0],
   [0, 1, 1, 1],
   [0, 1, 0, 0],
   [0, 1, 0, 1],
   [0, 0, 1, 2],
   [0, 0, 1, 1],
   [1, 1, 0, 0],
   [1, 1, 0, 2],
   [1, 0, 1, 0],
   [1, 0, 1, 2],
   [1, 0, 1, 1],
   [1, 0, 0, 0],
   [1, 0, 0, 1]]
y = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

#设置类别映射表
class_map = {
    0: '不满意',
    1: '满意'
}

#2.创建并训练决策树模型
model = tree.DecisionTreeClassifier()
model.fit(x, y)

#3.设置决策树参数绘制决策树
dot_data = tree.export_graphviz(
    model,
    feature_names=['维护类型','环境温度','环境湿度','通风效能'],
    class_names = list(map(lambda x:class_map[x],model.classes_)),
    filled = True,
    rounded = True,
    fontname='SimHei',
    special_characters=True,
    leaves_parallel=False

)
graph = graphviz.Source(dot_data)
graph.render("DecisionTree", format="png")
graph.view()
相关推荐
jiushun_suanli3 小时前
PyTorch CV模型实战全流程(二)
人工智能·pytorch·python
nju_spy3 小时前
NJU-SME 人工智能(三) -- 正则化 + 分类 + SVM
人工智能·机器学习·支持向量机·逻辑回归·对偶问题·正则化·auc-roc
咚咚王者3 小时前
人工智能之编程基础 Python 入门:第三章 基础语法
人工智能·python
深兰科技3 小时前
深兰科技入选“2025中国人工智能行业创新力企业百强”
人工智能·科技·百度·kafka·rabbitmq·memcached·深兰科技
柳鲲鹏4 小时前
全网首发:OpenCV防抖处理后,画面数据的存储及复制到原画面
人工智能·opencv·计算机视觉
nju_spy4 小时前
南京大学LLM开发基础(四)MoE, LoRA, 数的精度 + MLP层实验
人工智能·lora·大模型·混合精度·混合专家模型 moe·densemlp·门控机制
电鱼智能的电小鱼4 小时前
基于电鱼 ARM 工控机的AI视频智能分析方案:让传统监控变得更聪明
网络·arm开发·人工智能·嵌入式硬件·算法·音视频
阿里云大数据AI技术4 小时前
云栖实录 | AI 搜索引擎如何驱动亿级物流:货拉拉 x 阿里云 Elasticsearch
人工智能·搜索引擎