机器学习库的决策树绘制

使用graphviz绘制决策树更好一点,可以避免节点重叠,并且导出的pdf属于非图片型pdf。

绘制决策树大体分为3个步骤:

1.准备数据

2.创建并训练决策树模型

3.设置决策树参数绘制决策树

示例代码如下:

python 复制代码
from sklearn import tree
import graphviz

#1.准备数据
x=[[2, 0, 0, 2],
   [2, 1, 1, 0],
   [2, 1, 1, 2],
   [2, 1, 1, 1],
   [2, 0, 1, 0],
   [2, 0, 1, 1],
   [2, 0, 0, 1],
   [0, 1, 1, 0],
   [0, 1, 1, 1],
   [0, 1, 0, 0],
   [0, 1, 0, 1],
   [0, 0, 1, 2],
   [0, 0, 1, 1],
   [1, 1, 0, 0],
   [1, 1, 0, 2],
   [1, 0, 1, 0],
   [1, 0, 1, 2],
   [1, 0, 1, 1],
   [1, 0, 0, 0],
   [1, 0, 0, 1]]
y = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

#设置类别映射表
class_map = {
    0: '不满意',
    1: '满意'
}

#2.创建并训练决策树模型
model = tree.DecisionTreeClassifier()
model.fit(x, y)

#3.设置决策树参数绘制决策树
dot_data = tree.export_graphviz(
    model,
    feature_names=['维护类型','环境温度','环境湿度','通风效能'],
    class_names = list(map(lambda x:class_map[x],model.classes_)),
    filled = True,
    rounded = True,
    fontname='SimHei',
    special_characters=True,
    leaves_parallel=False

)
graph = graphviz.Source(dot_data)
graph.render("DecisionTree", format="png")
graph.view()
相关推荐
AI营销快线7 小时前
AI如何每日自动生成大量高质量营销素材?
大数据·人工智能
元智启7 小时前
企业 AI 智能体:零代码落地指南与多场景实操案例
人工智能
宁大小白7 小时前
pythonstudy Day31
python·机器学习
xiaoxiaoxiaolll7 小时前
智能计算模拟:第一性原理+分子动力学+机器学习
人工智能·机器学习
OpenCSG7 小时前
现代 AI 代理设计:17 种架构的系统化实战合集
人工智能·架构
KKKlucifer7 小时前
从 “人工标注” 到 “AI 驱动”:数据分类分级技术的效率革命
大数据·人工智能·分类
九章智算云7 小时前
短视频 / 图片不够清?SeedVR2.5 超分操作指南,一键拉满画质
人工智能·ai·大模型·aigc
我爱鸢尾花7 小时前
第十四章聚类方法理论及Python实现
大数据·python·机器学习·数据挖掘·数据分析·聚类
哔哩哔哩技术7 小时前
从JS云函数到MCP:打造跨平台AI Agent工具的工程实践
人工智能