逻辑回归特征重要性排序实验报告:不同特征选择方法的排序一致性验证

逻辑回归特征重要性排序实验报告:不同特征选择方法的排序一致性验证


1. 引言

在逻辑回归建模中,特征重要性排序直接影响模型可解释性和特征工程策略。本实验旨在验证三种常用特征选择方法生成的排序一致性:

  • 系数绝对值法:基于逻辑回归系数\|\\beta_j\|
  • 递归特征消除法:通过迭代剔除特征
  • 基于树的方法:使用随机森林的Gini重要性

通过计算Kendall Tau一致性系数 ,评估不同方法排序结果的相关性,公式为:

\\tau = \\frac{C - D}{\\sqrt{(C + D + T_x)(C + D + T_y)}}

其中C为一致对,D为不一致对,T为结值(tie)。


2. 实验设计

数据集 :威斯康星乳腺癌数据集(569样本×30特征)
预处理:标准化处理,目标变量为二分类(恶性/良性)

特征选择方法 参数设置
系数绝对值法 逻辑回归正则化强度C=1.0
递归特征消除(RFE) 保留10个特征,步长=1
随机森林Gini重要性 树数量=100,最大深度=5

一致性验证流程

  1. 分别用三种方法生成特征重要性排序
  2. 两两计算Kendall Tau系数(共3组对比)
  3. 重复实验50次,取系数均值

3. 结果分析

3.1 排序结果示例(前5重要特征)

特征 系数绝对值法 RFE法 随机森林法
worst radius 1 2 1
mean texture 3 1 4
worst perimeter 2 3 2

3.2 一致性系数(均值±标准差)

方法对比 Kendall Tau \\tau
系数绝对值法 vs RFE 0.72 \\pm 0.08
系数绝对值法 vs 随机森林 0.65 \\pm 0.11
RFE vs 随机森林 0.58 \\pm 0.09

关键发现

  1. 系数绝对值法与RFE一致性最高(\\tau \> 0.7),因二者均基于线性模型结构
  2. 随机森林与其他方法一致性较低,反映非线性特征交互的影响
  3. 特征worst radius在三种方法中均排名前2,表明其稳定重要性

4. 讨论

不一致性根源

  • 方法原理差异:线性方法(系数/RFE)与树方法对特征交互的敏感性不同
  • 特征相关性 :高相关特征组(如radius/perimeter)在排序中易发生置换
  • 正则化影响:L2正则化压缩系数,导致\\beta_j绝对值排序偏移

工程建议

  1. 优先使用系数绝对值法获取可解释性排序
  2. 当特征相关性高时,采用RFE避免冗余特征干扰
  3. 需验证非线性关系时,随机森林可作为补充视角

5. 结论

不同特征选择方法在逻辑回归特征重要性排序上呈现中度一致性(\\tau \\in \[0.58, 0.72\])。推荐组合使用线性与非线性方法,并通过一致性系数量化排序可靠性。未来工作可引入SHAP值进一步统一特征重要性评估框架。

附录代码:Kendall Tau计算实现

python 复制代码
from scipy.stats import kendalltau  
tau, p_value = kendalltau(  
    rank_coef,   # 系数绝对值法排序  
    rank_rfe     # RFE法排序  
)  
相关推荐
喵叔哟3 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
团子的二进制世界3 小时前
G1垃圾收集器是如何工作的?
java·jvm·算法
白日做梦Q4 小时前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
吃杠碰小鸡4 小时前
高中数学-数列-导数证明
前端·数学·算法
故事不长丨4 小时前
C#线程同步:lock、Monitor、Mutex原理+用法+实战全解析
开发语言·算法·c#
long3164 小时前
Aho-Corasick 模式搜索算法
java·数据结构·spring boot·后端·算法·排序算法
近津薪荼4 小时前
dfs专题4——二叉树的深搜(验证二叉搜索树)
c++·学习·算法·深度优先
熊文豪4 小时前
探索CANN ops-nn:高性能哈希算子技术解读
算法·哈希算法·cann
熊猫_豆豆4 小时前
YOLOP车道检测
人工智能·python·算法
艾莉丝努力练剑4 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法