关于jupyter notebook调用GPU

目录

1、查看自己的驱动版本,并下载对应的CUDA、CUDNN。

2、官网下载CUDA、CUDNN

[3、把系统下的CUDA的bin目录写入当前环境的PATH(在 Anaconda Prompt已激活的环境中执行)](#3、把系统下的CUDA的bin目录写入当前环境的PATH(在 Anaconda Prompt已激活的环境中执行))

4、下载PyTorch(下载与cuda适配的PyTorch版本)

5、把GPU环境注册成独立内核

[6、返回jupyter notebook,点击Kernel→Change Kernel→选择刚刚注册好的"Python (torch+GPU)"](#6、返回jupyter notebook,点击Kernel→Change Kernel→选择刚刚注册好的“Python (torch+GPU)”)


1、查看自己的驱动版本,并下载对应的CUDA、CUDNN。

方法一:桌面右键找到NVIDIA控制面板,打开后点击系统信息

方法二:打开cmd,输入nvidia-smi

2、官网下载CUDA、CUDNN

(这是我下载的版本)

参考:

https://blog.csdn.net/qq_40647372/article/details/134940429?fromshare=blogdetail&sharetype=blogdetail&sharerId=134940429&sharerefer=PC&sharesource=m0_74265922&sharefrom=from_link

3、把系统下的CUDA的bin目录写入当前环境的PATH(在 Anaconda Prompt已激活的环境中执行)

复制代码
# 改成自己下载的版本
set "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5"
set "PATH=%CUDA_PATH%\bin;%CUDA_PATH%\libnvvp;%PATH%"

执行完成后输入以下两条命令确认是否能被找到

复制代码
where cudart64_110.dll

where cudnn64_8.dll

4、下载PyTorch(下载与cuda适配的PyTorch版本)

复制代码
pip install torch==1.11.0+cu115 torchvision==0.12.0+cu115 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu115

5、把GPU环境注册成独立内核

复制代码
conda activate pytorch-gpu          # 你的 GPU 环境名
pip install ipykernel
python -m ipykernel install --user --name pytorch-gpu --display-name "Python (torch+GPU)"

6、返回jupyter notebook,点击Kernel→Change Kernel→选择刚刚注册好的"Python (torch+GPU)"

相关推荐
Wnq100721 天前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴1 天前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案1 天前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵1 天前
上下文窗口:AI 的“大脑容量”
人工智能
workflower1 天前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_446122461 天前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维1 天前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
java1234_小锋1 天前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
大刘讲IT1 天前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx9910131 天前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习