关于jupyter notebook调用GPU

目录

1、查看自己的驱动版本,并下载对应的CUDA、CUDNN。

2、官网下载CUDA、CUDNN

[3、把系统下的CUDA的bin目录写入当前环境的PATH(在 Anaconda Prompt已激活的环境中执行)](#3、把系统下的CUDA的bin目录写入当前环境的PATH(在 Anaconda Prompt已激活的环境中执行))

4、下载PyTorch(下载与cuda适配的PyTorch版本)

5、把GPU环境注册成独立内核

[6、返回jupyter notebook,点击Kernel→Change Kernel→选择刚刚注册好的"Python (torch+GPU)"](#6、返回jupyter notebook,点击Kernel→Change Kernel→选择刚刚注册好的“Python (torch+GPU)”)


1、查看自己的驱动版本,并下载对应的CUDA、CUDNN。

方法一:桌面右键找到NVIDIA控制面板,打开后点击系统信息

方法二:打开cmd,输入nvidia-smi

2、官网下载CUDA、CUDNN

(这是我下载的版本)

参考:

https://blog.csdn.net/qq_40647372/article/details/134940429?fromshare=blogdetail&sharetype=blogdetail&sharerId=134940429&sharerefer=PC&sharesource=m0_74265922&sharefrom=from_link

3、把系统下的CUDA的bin目录写入当前环境的PATH(在 Anaconda Prompt已激活的环境中执行)

复制代码
# 改成自己下载的版本
set "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5"
set "PATH=%CUDA_PATH%\bin;%CUDA_PATH%\libnvvp;%PATH%"

执行完成后输入以下两条命令确认是否能被找到

复制代码
where cudart64_110.dll

where cudnn64_8.dll

4、下载PyTorch(下载与cuda适配的PyTorch版本)

复制代码
pip install torch==1.11.0+cu115 torchvision==0.12.0+cu115 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu115

5、把GPU环境注册成独立内核

复制代码
conda activate pytorch-gpu          # 你的 GPU 环境名
pip install ipykernel
python -m ipykernel install --user --name pytorch-gpu --display-name "Python (torch+GPU)"

6、返回jupyter notebook,点击Kernel→Change Kernel→选择刚刚注册好的"Python (torch+GPU)"

相关推荐
阿里云大数据AI技术4 分钟前
【AAAI2026】阿里云人工智能平台PAI视频编辑算法论文入选
人工智能
玄同7656 分钟前
我的 Trae Skill 实践|使用 UV 工具一键搭建 Python 项目开发环境
开发语言·人工智能·python·langchain·uv·trae·vibe coding
苍何27 分钟前
腾讯重磅开源!混元图像 3.0 图生图真香!
人工智能
千里马也想飞30 分钟前
人工智能在医疗领域的应用与研究论文写作实操:AI辅助快速完成框架+正文创作
人工智能
Rorsion35 分钟前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
勾股导航43 分钟前
K-means
人工智能·机器学习·kmeans
liliangcsdn44 分钟前
Diff2Flow中扩散和流匹配的对齐探索
人工智能
SmartBrain1 小时前
战略洞察:以AI为代表的第四次工业革命
人工智能·语言模型·aigc
一个处女座的程序猿1 小时前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay1 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习