探索不同的优化器对分类精度的影响和卷积层的输入输出的shape的计算公式

1 问题

  1. 探索不同的优化器对分类精度的影响
  2. 卷积层的输入输出的shape的计算公式

2 方法

问题1:

在PyTorch中,我们可以使用不同的优化器来优化神经网络的参数,以改善模型的分类精度。下面是一个示例代码,演示如何使用不同的优化器来训练一个简单的神经网络,并比较它们对分类精度的影响:

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch import torch.nn as nn # 定义一个简单的神经网络 class Net(nn.Module): def init(self): super(Net, self).init() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 2) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义损失函数和评估指标 criterion = nn.CrossEntropyLoss() accuracy = nn.functional.accuracy # 定义数据集和超参数 train_loader = torch.utils.data.DataLoader(...) # 加载训练数据集 test_loader = torch.utils.data.DataLoader(...) # 加载测试数据集 learning_rate = 0.01 epochs = 100 batch_size = 32 # 定义不同的优化器 optimizers = { 'SGD': optim.SGD(model.parameters(), lr=learning_rate), 'Adam': optim.Adam(model.parameters(), lr=learning_rate), 'RMSProp': optim.RMSprop(model.parameters(), lr=learning_rate) } # 训练模型并评估不同优化器对分类精度的影响 model = Net() # 创建模型实例 for epoch in range(epochs): for name, optimizer in optimizers.items(): # 切换到训练模式 model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # 清空梯度缓存 output = model(data) # 前向传播 loss = criterion(output, target) # 计算损失函数 loss.backward() # 反向传播,计算梯度 optimizer.step() # 更新参数 # 切换到评估模式 model.eval() with torch.no_grad(): correct = 0 total = 0 for data, target in test_loader: output = model(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() accuracy_dict = {'{}: {}'.format(name, accuracy(correct, total)): correct / total} print('Epoch: {}, Accuracy: {:.2f}%'.format(epoch + 1, accuracy_dict[name])) |

该代码示例演示了如何在PyTorch中使用不同的优化器(如SGD、Adam和RMSProp)来训练一个简单的神经网络,并评估这些优化器对分类精度的影响。代码中定义了一个名为"Net"的简单神经网络,该网络包含两个全连接层,并使用交叉熵损失函数进行训练和评估。在每个训练周期中,代码使用不同的优化器来更新神经网络的参数,并计算测试集上的分类精度。通过运行这个示例代码,我们可以观察到不同优化器在训练过程中对分类精度的影响。在每个训练周期后,我们可以比较各个优化器的准确率,并选择在测试集上表现最好的优化器来进一步训练模型。

问题2:

答:卷积层的输入shape为[N, C, H, W],其中N为样本数量,C为通道数,H为高度,W为宽度;输出shape为[N, out_channels, H', W'],其中out_channels为输出通道数,H'和W'分别为输出特征图的高度和宽度。具体的计算公式如下:

H'=(H+2*padding-kernel_size)/stride+1

W'=(W+2*padding-kernel_size)/stride+1

3 结语

这段代码演示了如何在PyTorch中使用不同的优化器(如SGD、Adam和RMSProp)来训练一个简单的神经网络,并评估这些优化器对分类精度的影响。代码中定义了一个名为"Net"的简单神经网络,该网络包含两个全连接层,并使用交叉熵损失函数进行训练和评估。在每个训练周期中,代码使用不同的优化器来更新神经网络的参数,并计算测试集上的分类精度。通过运行这个示例代码,我们可以观察到不同优化器在训练过程中对分类精度的影响。在每个训练周期后,我们可以比较各个优化器的准确率,并选择在测试集上表现最好的优化器来进一步训练模型。这些内容对于理解和应用深度学习模型非常重要。

相关推荐
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144878 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile8 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5778 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥8 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7258 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h8 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切8 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
数据与后端架构提升之路8 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿8 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能