深度学习Adam优化器核心概念全解析:参数,梯度,一阶动量,二阶动量

目录

一、参数(weights)

二、梯度(gradients)

三、一阶动量(m,Momentum)

四、二阶动量(v,Variance)

[五、它们如何在优化中协作(以 Adam 为例)](#五、它们如何在优化中协作(以 Adam 为例))


Adam优化器是深度学习框架Pytorch中常用的一个优化器,其主要包含了参数,梯度,一阶动量,二阶动量这四个部分。


一、参数(weights

  • 是什么: 模型中需要学习的核心数值,比如神经网络层的权重矩阵、偏置项等。

  • 作用: 决定模型的行为。训练的目标就是不断更新这些参数,让模型输出更接近目标值。

  • 例子:

    python 复制代码
    W = torch.nn.Linear(512, 512).weight

    这就是一个权重矩阵(参数)。


二、梯度(gradients

  • 是什么: 参数对损失函数的偏导数,表示"如果我改动这个参数,损失会往哪个方向变"。

  • 作用: 告诉优化器如何调整参数以减小损失。

  • 生成方式: 通过反向传播(backpropagation)自动计算。

简单理解:

梯度是"路标"------告诉优化器应该往哪个方向走(减小损失)。

例子:

python 复制代码
loss.backward()
print(W.grad)  # 这里的grad就是梯度

三、一阶动量(m,Momentum)

  • 是什么: 梯度的"指数滑动平均"(Exponential Moving Average)。

  • 作用: 平滑梯度更新,让参数更新方向更稳定,不会抖动。

  • 公式:

    其中 ( g_t ) 是当前梯度,(\beta_1) 通常取 0.9。

直观理解:

想象优化器是一辆车,梯度是"当前推力",而一阶动量是"惯性"。

你不希望车每一步都完全按梯度走,而是沿着长期平均方向继续前进。


四、二阶动量(v,Variance)

  • 是什么: 梯度平方的指数滑动平均,衡量梯度的"变化幅度"。

  • 作用: 控制学习率的自适应调整,让更新在不同维度上自动放缓或加速。

  • 公式:

    其中 (\beta_2) 通常取 0.999。

直观理解:

v 表示"梯度震荡的能量"。

如果某个参数的梯度变化太剧烈,优化器会自动降低它的学习率,避免发散。


五、它们如何在优化中协作(以 Adam 为例)

Adam 优化器结合了一阶和二阶动量,更新公式如下:

  • (\theta_t):模型参数(weights)

  • (m_t):一阶动量(平滑的方向)

  • (v_t):二阶动量(平滑的幅度)

  • (\eta):学习率

这意味着 Adam 更新时不仅考虑了当前梯度,还考虑了历史趋势 (m)和不确定性(v)。

相关推荐
哥布林学者30 分钟前
吴恩达深度学习课程三: 结构化机器学习项目 第一周:机器学习策略(二)数据集设置
深度学习·ai
飞扬的风信子1 小时前
RAG基础知识
机器学习
【建模先锋】2 小时前
精品数据分享 | 锂电池数据集(四)PINN+锂离子电池退化稳定性建模和预测
深度学习·预测模型·pinn·锂电池剩余寿命预测·锂电池数据集·剩余寿命
九年义务漏网鲨鱼2 小时前
【大模型学习】现代大模型架构(二):旋转位置编码和SwiGLU
深度学习·学习·大模型·智能体
CoovallyAIHub2 小时前
破局红外小目标检测:异常感知Anomaly-Aware YOLO以“俭”驭“繁”
深度学习·算法·计算机视觉
云雾J视界3 小时前
AI芯片设计实战:用Verilog高级综合技术优化神经网络加速器功耗与性能
深度学习·神经网络·verilog·nvidia·ai芯片·卷积加速器
西格电力科技5 小时前
分布式光伏 “四可” 装置:“发电孤岛” 到 “电网友好” 的关键跨越
分布式·科技·机器学习·能源
陈天伟教授7 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
噜~噜~噜~11 小时前
最大熵原理(Principle of Maximum Entropy,MaxEnt)的个人理解
深度学习·最大熵原理