线性代数 - 初等矩阵

线性代数 - 初等矩阵

flyfish

单位矩阵

单位矩阵是一种特殊的方阵,:主对角线(从左上到右下)上的元素全是1,其余位置的元素全是0。

比如3阶单位矩阵I3=[100010001]\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}I3= 100010001

它的作用类似数字"1"------任何矩阵和它相乘,结果都等于原矩阵(前提是乘法规则允许)。

初等矩阵

初等矩阵是单位矩阵经过一次初等行变换或初等列变换后得到的矩阵,用它左乘原矩阵等价于对原矩阵做相同的初等行变换,右乘则等价于做相同的初等列变换。

矩阵
A=[211433879]\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix}A= 248137139

1. 交换两行(列)对应的初等矩阵

初等变换:交换A\mathbf{A}A的第1行和第2行(记为r1↔r2r_1 \leftrightarrow r_2r1↔r2)

构造初等矩阵:对单位矩阵I3=[100010001]\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}I3= 100010001 做同样的行交换,得到E1=[010100001]\mathbf{E}_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}E1= 010100001

验证效果:左乘E1A=[010100001][211433879]=[433211879]\mathbf{E}_1\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 3 \\ 2 & 1 & 1 \\ 8 & 7 & 9 \end{bmatrix}E1A= 010100001 248137139 = 428317319 ,结果正是A\mathbf{A}A交换1、2行后的矩阵。

2. 某行(列)乘非零常数对应的初等矩阵

初等变换:将A\mathbf{A}A的第1行乘2(记为2r12r_12r1)

构造初等矩阵:对单位矩阵I3\mathbf{I}_3I3的第1行乘2,得到E2=[200010001]\mathbf{E}_2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}E2= 200010001

验证效果:左乘E2A=[200010001][211433879]=[422433879]\mathbf{E}_2\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 2 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix}E2A= 200010001 248137139 = 448237239

结果正是A\mathbf{A}A第1行乘2后的矩阵。

3. 某行(列)的k倍加到另一行(列)对应的初等矩阵

初等变换:将A\mathbf{A}A第1行的2倍加到第2行(记为r2+2r1r_2 + 2r_1r2+2r1)

构造初等矩阵:对单位矩阵I3\mathbf{I}_3I3做同样变换(第1行乘2加至第2行),得到E3=[100210001]\mathbf{E}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}E3= 120010001

验证效果:左乘E3A=[100210001][211433879]=[211855879]\mathbf{E}_3\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 8 & 5 & 5 \\ 8 & 7 & 9 \end{bmatrix}E3A= 120010001 248137139 = 288157159 ,结果正是A\mathbf{A}A做r2+2r1r_2 + 2r_1r2+2r1变换后的矩阵。

相关推荐
weixin_429630262 小时前
第6章 支持向量机
算法·机器学习·支持向量机
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz2 小时前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究2 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习
门框研究员2 小时前
AI基础设施的临界点:算力、资本与政策的三重博弈
人工智能
追赶sun3 小时前
讨论矩阵等价、相似的几何含义
线性代数
罗西的思考3 小时前
【Agent】 ACE(Agentic Context Engineering)源码阅读笔记 ---(2)--- 训练
人工智能
AKAMAI3 小时前
AI推理硬件选型指南:CPU 与 GPU 的抉择
人工智能·云原生·云计算
wechat_Neal3 小时前
智能网联汽车 HD map架构解析
人工智能·程序人生·敏捷开发