线性代数 - 初等矩阵

线性代数 - 初等矩阵

flyfish

单位矩阵

单位矩阵是一种特殊的方阵,:主对角线(从左上到右下)上的元素全是1,其余位置的元素全是0。

比如3阶单位矩阵I3=[100010001]\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}I3= 100010001

它的作用类似数字"1"------任何矩阵和它相乘,结果都等于原矩阵(前提是乘法规则允许)。

初等矩阵

初等矩阵是单位矩阵经过一次初等行变换或初等列变换后得到的矩阵,用它左乘原矩阵等价于对原矩阵做相同的初等行变换,右乘则等价于做相同的初等列变换。

矩阵
A=[211433879]\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix}A= 248137139

1. 交换两行(列)对应的初等矩阵

初等变换:交换A\mathbf{A}A的第1行和第2行(记为r1↔r2r_1 \leftrightarrow r_2r1↔r2)

构造初等矩阵:对单位矩阵I3=[100010001]\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}I3= 100010001 做同样的行交换,得到E1=[010100001]\mathbf{E}_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}E1= 010100001

验证效果:左乘E1A=[010100001][211433879]=[433211879]\mathbf{E}_1\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 3 \\ 2 & 1 & 1 \\ 8 & 7 & 9 \end{bmatrix}E1A= 010100001 248137139 = 428317319 ,结果正是A\mathbf{A}A交换1、2行后的矩阵。

2. 某行(列)乘非零常数对应的初等矩阵

初等变换:将A\mathbf{A}A的第1行乘2(记为2r12r_12r1)

构造初等矩阵:对单位矩阵I3\mathbf{I}_3I3的第1行乘2,得到E2=[200010001]\mathbf{E}_2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}E2= 200010001

验证效果:左乘E2A=[200010001][211433879]=[422433879]\mathbf{E}_2\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 2 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix}E2A= 200010001 248137139 = 448237239

结果正是A\mathbf{A}A第1行乘2后的矩阵。

3. 某行(列)的k倍加到另一行(列)对应的初等矩阵

初等变换:将A\mathbf{A}A第1行的2倍加到第2行(记为r2+2r1r_2 + 2r_1r2+2r1)

构造初等矩阵:对单位矩阵I3\mathbf{I}_3I3做同样变换(第1行乘2加至第2行),得到E3=[100210001]\mathbf{E}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}E3= 120010001

验证效果:左乘E3A=[100210001][211433879]=[211855879]\mathbf{E}_3\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 8 & 5 & 5 \\ 8 & 7 & 9 \end{bmatrix}E3A= 120010001 248137139 = 288157159 ,结果正是A\mathbf{A}A做r2+2r1r_2 + 2r_1r2+2r1变换后的矩阵。

相关推荐
小明_GLC13 分钟前
Falcon-TST: A Large-Scale Time Series Foundation Model
论文阅读·人工智能·深度学习·transformer
Python_Study202514 分钟前
制造业数据采集系统选型指南:从技术挑战到架构实践
大数据·网络·数据结构·人工智能·架构
一只大侠的侠18 分钟前
【工业AI热榜】LSTM+GRU融合实战:设备故障预测准确率99.3%,附开源数据集与完整代码
人工智能·gru·lstm
weisian15125 分钟前
入门篇--知名企业-26-华为-2--华为VS阿里:两种科技路径的较量与共生
人工智能·科技·华为·阿里
棒棒的皮皮31 分钟前
【深度学习】YOLO模型精度优化 Checklist
人工智能·深度学习·yolo·计算机视觉
高洁0138 分钟前
CLIP 的双编码器架构是如何优化图文关联的?(2)
python·深度学习·机器学习·知识图谱
线束线缆组件品替网38 分钟前
Bulgin 防水圆形线缆在严苛环境中的工程实践
人工智能·数码相机·自动化·软件工程·智能电视
Cherry的跨界思维1 小时前
【AI测试全栈:Vue核心】22、从零到一:Vue3+ECharts构建企业级AI测试可视化仪表盘项目实战
vue.js·人工智能·echarts·vue3·ai全栈·测试全栈·ai测试全栈
冬奇Lab1 小时前
【Cursor进阶实战·07】OpenSpec实战:告别“凭感觉“,用规格驱动AI编程
人工智能·ai编程
玖疯子1 小时前
2025年总结框架
人工智能