线性代数 - 初等矩阵

线性代数 - 初等矩阵

flyfish

单位矩阵

单位矩阵是一种特殊的方阵,:主对角线(从左上到右下)上的元素全是1,其余位置的元素全是0。

比如3阶单位矩阵I3=[100010001]\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}I3= 100010001

它的作用类似数字"1"------任何矩阵和它相乘,结果都等于原矩阵(前提是乘法规则允许)。

初等矩阵

初等矩阵是单位矩阵经过一次初等行变换或初等列变换后得到的矩阵,用它左乘原矩阵等价于对原矩阵做相同的初等行变换,右乘则等价于做相同的初等列变换。

矩阵
A=[211433879]\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix}A= 248137139

1. 交换两行(列)对应的初等矩阵

初等变换:交换A\mathbf{A}A的第1行和第2行(记为r1↔r2r_1 \leftrightarrow r_2r1↔r2)

构造初等矩阵:对单位矩阵I3=[100010001]\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}I3= 100010001 做同样的行交换,得到E1=[010100001]\mathbf{E}_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}E1= 010100001

验证效果:左乘E1A=[010100001][211433879]=[433211879]\mathbf{E}_1\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 3 \\ 2 & 1 & 1 \\ 8 & 7 & 9 \end{bmatrix}E1A= 010100001 248137139 = 428317319 ,结果正是A\mathbf{A}A交换1、2行后的矩阵。

2. 某行(列)乘非零常数对应的初等矩阵

初等变换:将A\mathbf{A}A的第1行乘2(记为2r12r_12r1)

构造初等矩阵:对单位矩阵I3\mathbf{I}_3I3的第1行乘2,得到E2=[200010001]\mathbf{E}_2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}E2= 200010001

验证效果:左乘E2A=[200010001][211433879]=[422433879]\mathbf{E}_2\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 2 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix}E2A= 200010001 248137139 = 448237239

结果正是A\mathbf{A}A第1行乘2后的矩阵。

3. 某行(列)的k倍加到另一行(列)对应的初等矩阵

初等变换:将A\mathbf{A}A第1行的2倍加到第2行(记为r2+2r1r_2 + 2r_1r2+2r1)

构造初等矩阵:对单位矩阵I3\mathbf{I}_3I3做同样变换(第1行乘2加至第2行),得到E3=[100210001]\mathbf{E}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}E3= 120010001

验证效果:左乘E3A=[100210001][211433879]=[211855879]\mathbf{E}_3\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 8 & 5 & 5 \\ 8 & 7 & 9 \end{bmatrix}E3A= 120010001 248137139 = 288157159 ,结果正是A\mathbf{A}A做r2+2r1r_2 + 2r_1r2+2r1变换后的矩阵。

相关推荐
LinQingYanga13 分钟前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip15 分钟前
过去24小时AI创业趋势分析
人工智能
SEO_juper15 分钟前
AI SEO实战:整合传统技术与AI生成搜索的优化框架
人工智能·chatgpt·facebook·seo·geo·aeo
pp起床16 分钟前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
方见华Richard18 分钟前
自指-认知几何架构 可行性边界白皮书(务实版)
人工智能·经验分享·交互·原型模式·空间计算
冬奇Lab22 分钟前
AI时代的"工具自由":我是如何进入细糠时代的
人工智能·ai编程
CODECOLLECT1 小时前
技术解析|MDM移动设备管理系统无终身买断制度的底层逻辑
人工智能
北京迅为1 小时前
《【北京迅为】itop-3568开发板NPU使用手册》- 第 7章 使用RKNN-Toolkit-lite2
linux·人工智能·嵌入式·npu
我是一只puppy1 小时前
使用AI进行代码审查
javascript·人工智能·git·安全·源代码管理
阿杰学AI1 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer