25.样式迁移

python 复制代码
import torch
import torchvision
from torch import nn
from PIL import Image
import matplotlib.pyplot as plt
content_img =Image.open('../img/rainier.jpg')
style_img = Image.open('../img/autumn-oak.jpg')
fig, axes = plt.subplots(1, 2, figsize=(12, 6))  
axes[0].imshow(content_img)
axes[0].axis('off') 
axes[0].set_title('Content Image')  
axes[1].imshow(style_img)
axes[1].axis('off')
axes[1].set_title('Style Image') 
plt.tight_layout()  
plt.show()
python 复制代码
import torch
import torchvision
from torch import nn
from PIL import Image
import matplotlib.pyplot as plt
def preprocess(img, image_shape):
    transforms = torchvision.transforms.Compose([
        torchvision.transforms.Resize(image_shape),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=rgb_mean, std=rgb_std)])
    return transforms(img).unsqueeze(0)
def postprocess(img):
    img = img[0].to(rgb_std.device)
    img = torch.clamp(img.permute(1, 2, 0) * rgb_std + rgb_mean, 0, 1)
    return torchvision.transforms.ToPILImage()(img.permute(2, 0, 1))
def compute_loss(X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram):
    # 分别计算内容损失、风格损失和全变分损失
    contents_l = [content_loss(Y_hat, Y) * content_weight for Y_hat, Y in zip(
        contents_Y_hat, contents_Y)]
    styles_l = [style_loss(Y_hat, Y) * style_weight for Y_hat, Y in zip(
        styles_Y_hat, styles_Y_gram)]
    tv_l = tv_loss(X) * tv_weight
    # 对所有损失求和
    l = sum(10 * styles_l + contents_l + [tv_l])
    return contents_l, styles_l, tv_l, l
############################################################################################################
def content_loss(Y_hat, Y):
    # 我们从动态计算梯度的树中分离目标:
    # 这是一个规定的值,而不是一个变量。
    return torch.square(Y_hat - Y.detach()).mean()

def gram(X):
    num_channels, n = X.shape[1], X.numel() // X.shape[1]
    X = X.reshape((num_channels, n))
    return torch.matmul(X, X.T) / (num_channels * n)

def style_loss(Y_hat, gram_Y):
    return torch.square(gram(Y_hat) - gram_Y.detach()).mean()

def tv_loss(Y_hat):
    return 0.5 * (torch.abs(Y_hat[:, :, 1:, :] - Y_hat[:, :, :-1, :]).mean() +
                  torch.abs(Y_hat[:, :, :, 1:] - Y_hat[:, :, :, :-1]).mean())
############################################################################################################
class SynthesizedImage(nn.Module):
    def __init__(self, img_shape, **kwargs):
        super(SynthesizedImage, self).__init__(**kwargs)
        self.weight = nn.Parameter(torch.rand(*img_shape))

    def forward(self):
        return self.weight

def get_inits(X, device, lr, styles_Y):
    gen_img = SynthesizedImage(X.shape).to(device)
    gen_img.weight.data.copy_(X.data)
    trainer = torch.optim.Adam(gen_img.parameters(), lr=lr)
    styles_Y_gram = [gram(Y) for Y in styles_Y]
    return gen_img(), styles_Y_gram, trainer
############################################################################################################
def train(X, contents_Y, styles_Y, device, lr, num_epochs, lr_decay_epoch):
    X, styles_Y_gram, trainer = get_inits(X, device, lr, styles_Y)
    scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_decay_epoch, 0.8)

    content_loss_list = []
    style_loss_list = []
    tv_loss_list = []
    fig, (ax_img, ax_loss) = plt.subplots(1, 2, figsize=(12, 6))
    for epoch in range(num_epochs):
        trainer.zero_grad()
        contents_Y_hat, styles_Y_hat = extract_features(X, content_layers, style_layers)
        contents_l, styles_l, tv_l, l = compute_loss(X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram)
        l.backward()
        trainer.step()
        scheduler.step()
        if (epoch + 1) % 10 == 0:
            content_loss_list.append(float(sum(contents_l)))
            style_loss_list.append(float(sum(styles_l)))
            tv_loss_list.append(float(tv_l))

    ax_img.clear()  
    ax_img.imshow(postprocess(X))  # 显示生成的图像
    ax_img.axis('off')  # 关闭坐标轴
    ax_img.set_title(f'Final Image at Epoch {num_epochs}')
    
    # 显示损失曲线
    ax_loss.clear()  # 清空损失曲线
    ax_loss.plot(range(1, len(content_loss_list) + 1), content_loss_list, label='Content Loss', color='blue')
    ax_loss.plot(range(1, len(style_loss_list) + 1), style_loss_list, label='Style Loss', color='orange')
    ax_loss.plot(range(1, len(tv_loss_list) + 1), tv_loss_list, label='TV Loss', color='green')
    ax_loss.set_xlabel('Epoch')
    ax_loss.set_ylabel('Loss')
    ax_loss.legend()
    ax_loss.set_title('Final Loss Curves')
    plt.tight_layout()
    plt.show() 
    
    return X
def extract_features(X, content_layers, style_layers):
    contents = []
    styles = []
    for i in range(len(net)):
        X = net[i](X)
        if i in style_layers:
            styles.append(X)
        if i in content_layers:
            contents.append(X)
    return contents, styles

def get_contents(image_shape, device):
    content_X = preprocess(content_img, image_shape).to(device)
    contents_Y, _ = extract_features(content_X, content_layers, style_layers)
    return content_X, contents_Y

def get_styles(image_shape, device):
    style_X = preprocess(style_img, image_shape).to(device)
    _, styles_Y = extract_features(style_X, content_layers, style_layers)
    return style_X, styles_Y

############################################################################################################
rgb_mean = torch.tensor([0.485, 0.456, 0.406])
rgb_std = torch.tensor([0.229, 0.224, 0.225])
pretrained_net = torchvision.models.vgg19(pretrained=True)
style_layers, content_layers = [0, 5, 10, 19, 28], [25]#挑选一些层间特征设计成风格层和内容层
net = nn.Sequential(*[pretrained_net.features[i] for i in range(max(content_layers + style_layers) + 1)])
############################################################################################################
content_weight, style_weight, tv_weight = 1, 1e3, 10
image_shape = (300, 450)
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = net.to(device)
content_X, contents_Y = get_contents(image_shape, device)
_, styles_Y = get_styles(image_shape, device)
output = train(content_X, contents_Y, styles_Y, device, 0.3, 2000, 50)
############################################################################################################
相关推荐
Anarkh_Lee3 分钟前
【小白也能实现智能问数智能体】使用开源的universal-db-mcp在coze中实现问数 AskDB智能体
数据库·人工智能·ai·开源·ai编程
算法_小学生6 分钟前
LeetCode 热题 100(分享最简单易懂的Python代码!)
python·算法·leetcode
John_ToDebug14 分钟前
2026年展望:在技术涌现时代构筑确定性
人工智能·程序人生
AndyHeee24 分钟前
【windows使用TensorFlow,GPU无法识别问题汇总,含TensorFlow完整安装过程】
人工智能·windows·tensorflow
230万光年的思念27 分钟前
【无标题】
python
shengli72233 分钟前
机器学习与人工智能
jvm·数据库·python
jay神39 分钟前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
2301_7657031441 分钟前
Python迭代器(Iterator)揭秘:for循环背后的故事
jvm·数据库·python
交通上的硅基思维1 小时前
人工智能安全:风险、机制与治理框架研究
人工智能·安全·百度
老百姓懂点AI1 小时前
[测试工程] 告别“玄学”评测:智能体来了(西南总部)基于AI agent指挥官的自动化Eval框架与AI调度官的回归测试
运维·人工智能·自动化