概率论直觉(一):大数定律

想象一下抛掷 n 枚硬币。正面朝上的比例会是一个随机值,可能是 0.48,也可能是 0.53,它会变化。但大数定律是这么说的:

当 n 趋近于无穷大时,正面朝上的比例会收敛到真实概率 (0.5)。不仅仅是"接近",它以概率 1 收敛。随机性并没有消失,但它对平均值的影响会减小。

这样想:抛掷 10 枚硬币,出现 7 次正面朝上(70%)并不奇怪。但用一百万枚硬币,得到70万枚正面朝上(70%)的概率微乎其微。样本越多,实际比例就越集中在预期值附近。

所以,这种"确定性"出现在极限情况下,并非对任何单个结果的确定性,而是对整体行为的确定性。即使每个个体事件仍然是随机的,平均值也会趋于稳定。


大数定律不仅仅是对我们观察到的现象的描述,它是一个可以被证明的数学定理。我们不需要真的抛掷无数枚硬币来验证它的正确性,就像我们不需要测量每一个三角形来验证勾股定理一样。

证明过程运用了概率和极限的正式定义。我们首先做出一些假设,比如每次抛硬币都是独立的,概率为1/2。然后运用数学推理来证明:当n趋于无穷大时,平均值必然收敛于期望值。

关键工具包括切比雪夫不等式,或者更复杂的方法。它们表明,平均值与真实值偏差任意固定值的概率随着 n 的增大而趋近于零。

我们永远无法真正达到无穷大。但证明告诉我们,在无穷大的极限情况下会发生什么,更实际地说,它告诉我们,对于较大的有限值 n,收敛的速度有多快。


让我们先来看一下更直观的"弱大数定律"。

假设我们抛掷 n 枚硬币。每次抛掷的结果 Xi 都是随机的:正面为 1,反面为 0。每次正面朝上的概率都是 1/2。

平均值是:(X₁ + X₂ + ... + Xn)/n

我们想证明,随着 n 的增大,这个平均值会趋近于 1/2。

关键在于,我们可以用方差来衡量随机值的"分散程度"。抛一次硬币,方差是 1/4。

现在,当你对 n 个独立的随机变量取平均值时,该平均值的方差为:(一次抛硬币的方差)/n = 1/(4n)

这一点至关重要,随着 n 增大,方差会减小。平均值的分布范围会缩小,更集中在 1/2 附近。然后我们使用切比雪夫不等式,它指出:偏离期望值的概率受方差的限制。

相关推荐
热心网友俣先生3 小时前
第六届“大湾区杯”粤港澳金融数学建模竞赛赛题浅析-助攻快速选题
数学建模·金融
摇滚侠3 小时前
Spring Boot3零基础教程,Reactive-Stream 四大核心组件,笔记106
java·spring boot·笔记
✎ ﹏梦醒͜ღ҉繁华落℘4 小时前
FreeRTOS学习笔记(应用)-- 各种 信号量的应用场景
笔记·学习
星星火柴9364 小时前
笔记 | C++面向对象高级开发
开发语言·c++·笔记·学习
BeingACoder4 小时前
【SAA】SpringAI Alibaba学习笔记(一):SSE与WS的区别以及如何注入多个AI模型
java·笔记·学习·saa·springai
安全不再安全5 小时前
免杀技巧 - 早鸟注入详细学习笔记
linux·windows·笔记·学习·测试工具·web安全·网络安全
LBuffer6 小时前
破解入门学习笔记题三十八
笔记·学习
CodeCraft Studio6 小时前
PPT处理控件Aspose.Slides教程:使用Java将PowerPoint笔记导出为PDF
java·笔记·pdf·powerpoint·aspose·ppt转pdf·java将ppt导出pdf
仰望—星空7 小时前
MiniEngine学习笔记 : DescriptorHeap
windows·笔记·学习