深度学习--激活函数

一、阶跃函数

python 复制代码
import numpy as np
# 阶跃函数
def binary_step0(x):
    if x>0:
        return 1
    return 0

# 阶跃函数-numpy
def binary_step(x):
    return np.array(x > 0,dtype=int)

二、Sigmoid函数

python 复制代码
import numpy as np
# Sigmoid函数
def sigmoid(x):
    return 1/(1+np.exp(-x))

三、Tanh函数

python 复制代码
import numpy as np
# Tanh函数
def tanh(x):
    return np.tanh(x)

四、ReLu函数

python 复制代码
import numpy as np
# ReLu函数
def relu(x):
    return np.maximum(0,x)

# leaky ReLu函数
def leaky_relu(x,alpha=0.01):
    return np.maximum(alpha*x,x)

# pReLu 函数(alpha 可训练)   RReLu(alpha 在训练时在一个均匀分布中随机选取)
def pReLu(x,alpha):
    return np.maximum(alpha*x,x)

# ELu
def EReLu(x,alpha):
    return np.maximum(alpha*(np.exp(x)-1),x)

五、softmax函数

python 复制代码
import numpy as np
# softmax 函数
def softmax(x):
    # 二维
    if x.ndim==2:
        # 溢出处理   keepdims保持维度一致
        x=x-np.max(x,axis=1,keepdims=True)
        # 二维axis有0 1   0表示高维  1表示次维   [高维][次维]    因为对行求  那么就是次维发生变化即 axis=1
        return np.exp(x)/np.sum(np.exp(x),axis=1,keepdims=True)
    # 三维
    if x.ndim==3:
        # 对行操作  则变化最低维    对列求操作变化最高维
        return np.exp(x)/np.sum(np.exp(x),axis=2,keepdims=True)
    # 一维的axis只有0
    # 溢出处理
    x=x-np.max(x)
    return np.exp(x) / np.sum(np.exp(x), axis=0)

六、其他激活函数

七、激活函数的选择

八、整体代码

python 复制代码
import numpy as np
# 阶跃函数
def binary_step0(x):
    if x>0:
        return 1
    return 0

# 阶跃函数-numpy
def binary_step(x):
    return np.array(x > 0,dtype=int)

# Sigmoid函数
def sigmoid(x):
    return 1/(1+np.exp(-x))

# Tanh函数
def tanh(x):
    return np.tanh(x)

# ReLu函数
def relu(x):
    return np.maximum(0,x)

# leaky ReLu函数
def leaky_relu(x,alpha=0.01):
    return np.maximum(alpha*x,x)

# pReLu 函数(alpha 可训练)   RReLu(alpha 在训练时在一个均匀分布中随机选取)
def pReLu(x,alpha):
    return np.maximum(alpha*x,x)
# ELu
def EReLu(x,alpha):
    return np.maximum(alpha*(np.exp(x)-1),x)
# Swish (SiLu)
def Swish(x):
    return x/1+(np.exp(-x))


# softmax 函数
def softmax(x):
    # 二维
    if x.ndim==2:
        # 溢出处理   keepdims保持维度一致
        x=x-np.max(x,axis=1,keepdims=True)
        # 二维axis有0 1   0表示高维  1表示次维   [高维][次维]    因为对行求  那么就是次维发生变化即 axis=1
        return np.exp(x)/np.sum(np.exp(x),axis=1,keepdims=True)
    # 三维
    if x.ndim==3:
        # 对行操作  则变化最低维    对列求操作变化最高维
        return np.exp(x)/np.sum(np.exp(x),axis=2,keepdims=True)
    # 一维的axis只有0
    # 溢出处理
    x=x-np.max(x)
    return np.exp(x) / np.sum(np.exp(x), axis=0)

# softplus
def softplus(x):
    return np.log(1+np.exp(x))

# 恒等函数
def identity(x):
    return x



if __name__ == '__main__':
    arr=np.array([1,2,3,4,5,-1,-2,-3,-4,-5])
    print(binary_step(arr))
    print(sigmoid(arr))
    print(tanh(arr))
    print(relu(arr))
    print(softmax(arr))

    X = np.array([[1,2,3,4,5],[-1,-2,-3,-4,-5]])
    print(softmax(X))
相关推荐
f***a3462 分钟前
开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)
人工智能·spring·开源
用户5191495848454 分钟前
BBDown:高效便捷的哔哩哔哩视频下载工具
人工智能·aigc
CV实验室6 分钟前
CV论文速递:覆盖视频生成与理解、3D视觉与运动迁移、多模态与跨模态智能、专用场景视觉技术等方向 (11.17-11.21)
人工智能·计算机视觉·3d·论文·音视频·视频生成
●VON7 分钟前
AI不能做什么?澄清常见误解
人工智能
数据堂官方账号14 分钟前
行业洞见 | AI鉴伪:数据驱动的数字安全变革
人工智能·安全
能鈺CMS16 分钟前
内容付费系统全面解析:构建知识变现体系的最强工具(2025 SEO 深度专题)
大数据·人工智能·html
Salt_07281 小时前
DAY 19 数组的常见操作和形状
人工智能·python·机器学习
无心水1 小时前
【Python实战进阶】2、Jupyter Notebook终极指南:为什么说不会Jupyter就等于不会Python?
python·jupyter·信息可视化·binder·google colab·python实战进阶·python工程化实战进阶
技术探索家1 小时前
别再让Claude乱写代码了!一个配置文件让AI准确率提升10%
人工智能
算家计算1 小时前
AI学习范式变革:Ilya Sutskever最新访谈揭示后规模时代的AI发展路径—从算力竞争到研究竞争的转向
人工智能·资讯