深度学习--激活函数

一、阶跃函数

python 复制代码
import numpy as np
# 阶跃函数
def binary_step0(x):
    if x>0:
        return 1
    return 0

# 阶跃函数-numpy
def binary_step(x):
    return np.array(x > 0,dtype=int)

二、Sigmoid函数

python 复制代码
import numpy as np
# Sigmoid函数
def sigmoid(x):
    return 1/(1+np.exp(-x))

三、Tanh函数

python 复制代码
import numpy as np
# Tanh函数
def tanh(x):
    return np.tanh(x)

四、ReLu函数

python 复制代码
import numpy as np
# ReLu函数
def relu(x):
    return np.maximum(0,x)

# leaky ReLu函数
def leaky_relu(x,alpha=0.01):
    return np.maximum(alpha*x,x)

# pReLu 函数(alpha 可训练)   RReLu(alpha 在训练时在一个均匀分布中随机选取)
def pReLu(x,alpha):
    return np.maximum(alpha*x,x)

# ELu
def EReLu(x,alpha):
    return np.maximum(alpha*(np.exp(x)-1),x)

五、softmax函数

python 复制代码
import numpy as np
# softmax 函数
def softmax(x):
    # 二维
    if x.ndim==2:
        # 溢出处理   keepdims保持维度一致
        x=x-np.max(x,axis=1,keepdims=True)
        # 二维axis有0 1   0表示高维  1表示次维   [高维][次维]    因为对行求  那么就是次维发生变化即 axis=1
        return np.exp(x)/np.sum(np.exp(x),axis=1,keepdims=True)
    # 三维
    if x.ndim==3:
        # 对行操作  则变化最低维    对列求操作变化最高维
        return np.exp(x)/np.sum(np.exp(x),axis=2,keepdims=True)
    # 一维的axis只有0
    # 溢出处理
    x=x-np.max(x)
    return np.exp(x) / np.sum(np.exp(x), axis=0)

六、其他激活函数

七、激活函数的选择

八、整体代码

python 复制代码
import numpy as np
# 阶跃函数
def binary_step0(x):
    if x>0:
        return 1
    return 0

# 阶跃函数-numpy
def binary_step(x):
    return np.array(x > 0,dtype=int)

# Sigmoid函数
def sigmoid(x):
    return 1/(1+np.exp(-x))

# Tanh函数
def tanh(x):
    return np.tanh(x)

# ReLu函数
def relu(x):
    return np.maximum(0,x)

# leaky ReLu函数
def leaky_relu(x,alpha=0.01):
    return np.maximum(alpha*x,x)

# pReLu 函数(alpha 可训练)   RReLu(alpha 在训练时在一个均匀分布中随机选取)
def pReLu(x,alpha):
    return np.maximum(alpha*x,x)
# ELu
def EReLu(x,alpha):
    return np.maximum(alpha*(np.exp(x)-1),x)
# Swish (SiLu)
def Swish(x):
    return x/1+(np.exp(-x))


# softmax 函数
def softmax(x):
    # 二维
    if x.ndim==2:
        # 溢出处理   keepdims保持维度一致
        x=x-np.max(x,axis=1,keepdims=True)
        # 二维axis有0 1   0表示高维  1表示次维   [高维][次维]    因为对行求  那么就是次维发生变化即 axis=1
        return np.exp(x)/np.sum(np.exp(x),axis=1,keepdims=True)
    # 三维
    if x.ndim==3:
        # 对行操作  则变化最低维    对列求操作变化最高维
        return np.exp(x)/np.sum(np.exp(x),axis=2,keepdims=True)
    # 一维的axis只有0
    # 溢出处理
    x=x-np.max(x)
    return np.exp(x) / np.sum(np.exp(x), axis=0)

# softplus
def softplus(x):
    return np.log(1+np.exp(x))

# 恒等函数
def identity(x):
    return x



if __name__ == '__main__':
    arr=np.array([1,2,3,4,5,-1,-2,-3,-4,-5])
    print(binary_step(arr))
    print(sigmoid(arr))
    print(tanh(arr))
    print(relu(arr))
    print(softmax(arr))

    X = np.array([[1,2,3,4,5],[-1,-2,-3,-4,-5]])
    print(softmax(X))
相关推荐
大、男人2 分钟前
python之contextmanager
android·python·adb
土豆.exe8 分钟前
若爱 (IfAI) v0.2.6 - 智能体进化:任务拆解与环境感知
人工智能
colfree12 分钟前
Scanpy
人工智能·机器学习
毕设源码-钟学长25 分钟前
【开题答辩全过程】以 基于Python的车辆管理系统为例,包含答辩的问题和答案
开发语言·python
Akamai中国42 分钟前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·云服务·云存储
CCPC不拿奖不改名1 小时前
数据处理与分析:数据可视化的面试习题
开发语言·python·信息可视化·面试·职场和发展
液态不合群1 小时前
线程池和高并发
开发语言·python
雨大王5121 小时前
汽车AI智能体矩阵:驱动行业智能化变革的新范式
人工智能·汽车
SmartRadio1 小时前
在CH585M代码中如何精细化配置PMU(电源管理单元)和RAM保留
linux·c语言·开发语言·人工智能·单片机·嵌入式硬件·lora