28. 门控循环单元(GRU)的实现

python 复制代码
####################################################################################################
import torch
from torch import nn
from d2l import torch as d2l
####################################################################################################
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01
    #Wz/Wr/Wh的对应的x,h,b
    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
#GRU初始化:初始层
def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        #@是做矩阵乘法:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

####################################################################################################
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
####################################################################################################
python 复制代码
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
相关推荐
Q_Q51100828512 分钟前
python+django/flask的情绪宣泄系统
spring boot·python·pycharm·django·flask·node.js·php
撸码猿18 分钟前
《Python AI入门》第9章 让机器读懂文字——NLP基础与情感分析实战
人工智能·python·自然语言处理
二川bro23 分钟前
多模态AI开发:Python实现跨模态学习
人工智能·python·学习
2301_7644413338 分钟前
Python构建输入法应用
开发语言·python·算法
love530love39 分钟前
【笔记】ComfUI RIFEInterpolation 节点缺失问题(cupy CUDA 安装)解决方案
人工智能·windows·笔记·python·插件·comfyui
青瓷程序设计1 小时前
昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
小殊小殊1 小时前
DeepSeek为什么这么慢?
人工智能·深度学习
秋邱1 小时前
智启未来:AGI 教育融合 × 跨平台联盟 × 个性化空间,重构教育 AI 新范式开篇:一场 “教育 ×AI” 的范式革命
人工智能·python·重构·推荐算法·agi
爱吃泡芙的小白白2 小时前
vscode、anaconda、git、python配置安装(自用)
ide·git·vscode·python·anaconda·学习记录
谷隐凡二2 小时前
Kubernetes主从架构简单解析:基于Python的模拟实现
python·架构·kubernetes