28. 门控循环单元(GRU)的实现

python 复制代码
####################################################################################################
import torch
from torch import nn
from d2l import torch as d2l
####################################################################################################
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01
    #Wz/Wr/Wh的对应的x,h,b
    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
#GRU初始化:初始层
def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        #@是做矩阵乘法:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

####################################################################################################
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
####################################################################################################
python 复制代码
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
相关推荐
我材不敲代码1 天前
Python实现打包贪吃蛇游戏
开发语言·python·游戏
0思必得01 天前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
韩立学长1 天前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
qq_192779871 天前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
薛定谔的猫19821 天前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
u0109272711 天前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊1 天前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
Imm7771 天前
中国知名的车膜品牌推荐几家
人工智能·python
tudficdew1 天前
实战:用Python分析某电商销售数据
jvm·数据库·python
sjjhd6521 天前
Python日志记录(Logging)最佳实践
jvm·数据库·python