Fine-tuning(微调/精调)是什么?看这篇就够了!

啥是微调?为啥要微调?什么时候微调?

Fine-tuning(微调/精调)

指在预训练模型上,用特定任务的数据进行额外训练,微调模型参数,使其适应新任务。

预训练模型

已在大规模数据上学习通用特征的基础模型(如qwen、deepseek)

belike: 应届毕业生

特点: 啥都会点,但缺特定行业经验

微调后:

注入领域专属知识(如金融、法律)使模型具备特定场景下的专业能力

belike: 培训后的牛马

特点: 专业打工人,业务能力杠杠的

Fine-tuning的优势

省钱省力:微调就像站在了"巨人(预训练模型)的肩膀上",避免了从零训练所需的巨大算力和数据成本。

性能强劲:在高质量领域数据上微调能显著提升模型在特定任务上的准确性和可靠性,使其表现远超通用模型。

灵活个性:可以塑造模型的风格和性格,使其输出更符合业务需求,如特定的文风、话术或决策逻辑。

Fine-tuning的类型

微调方法有很多种,从训练数据是否标注,可分为监督微调(SFT)和其他,从参数策略角度,可分为全量微调和高效微调。

全量微调

把所有参数都训练一遍,算力消耗大,但对模型改造更彻底

高效微调

只训练底模的部分参数,通过修改部分参数调整模型整体能力,LoRA是其中的一种常用策略,(QLoRA类似于它的pro版,更轻量)

什么时候选择Fine-tunning?

RAG的本质是给大模型添加参考书

适用于:知识更新快/要引用外部资料(如智能客服、基于公司资料问答)

Fine-tuning的本质是培养大模型成为某个领域的专家

适用于:任务风格固定/要改变模型说话方式(如特定领域的医疗/法律顾问)

总结

微调就是培养大模型成为领域专家

它省钱省力、性能强劲、灵活个性

全量 vs 高效/LoRA

要让大模型学新技能/风格用微调

要给大模型查资料用RAG

更多AI大模型学习视频及资源,都在智泊AI

相关推荐
骚戴1 天前
大语言模型(LLM)进阶:从闭源大模型 API 到开源大模型本地部署,四种接入路径全解析
java·人工智能·python·语言模型·自然语言处理·llm·开源大模型
stark张宇1 天前
别掉队!系统掌握 LLM 应用开发,这可能是你今年最值得投入的学习方向
人工智能·llm·agent
大模型教程1 天前
使用Langchain4j和Ollama3搭建RAG系统
langchain·llm·ollama
大模型教程1 天前
全网首发!清北麻省顶级教授力荐的《图解大模型》中文版终于来了,碾压 95% 同类教材
程序员·llm·agent
用户307140958481 天前
📢 深度解析 Dify 核心 LLM 提示模板库,揭秘 AI 交互的「幕后魔法」
人工智能·llm·agent
AI大模型1 天前
谷歌 Agents 白皮书中文版全网首发,堪称 AI 教材的天花板级神作
程序员·llm·agent
Elwin Wong1 天前
本地运行LangChain Agent用于开发调试
人工智能·langchain·大模型·llm·agent·codingagent
沛沛老爹1 天前
Prompt Engineering 基础原理:从入门到实践
llm·prompt·提示词·提示词工程·核心原则·思维链技术
CoderJia程序员甲1 天前
GitHub 热榜项目 - 日榜(2025-12-16)
llm·github·ai教程
Baihai_IDP1 天前
对长上下文能力有不同要求,怎么选择合适的模型?
人工智能·面试·llm