64QAM信号的数字预失真处理(MATLAB实现)

64QAM信号预失真处理MATLAB实现方案,用于补偿功率放大器的非线性失真。

matlab 复制代码
%% 64QAM信号预失真处理系统
clear; close all; clc;

%% 系统参数设置
M = 64;                 % QAM调制阶数
fs = 10e6;              % 采样率 (10 MHz)
fc = 2.4e9;             % 载波频率 (2.4 GHz)
symbolRate = 1e6;       % 符号率 (1 Mbaud)
sps = fs/symbolRate;    % 每符号采样数
numSymbols = 5000;      % 符号数量
filterSpan = 10;        % 滤波器跨度
rolloff = 0.35;         % 滚降因子

%% 生成64QAM信号
% 生成随机数据
data = randi([0 M-1], numSymbols, 1);

% 64QAM调制(单位平均功率)
txSymbols = qammod(data, M, 'UnitAveragePower', true);

% 脉冲成形(根升余弦滤波器)
rrcFilter = rcosdesign(rolloff, filterSpan, sps, 'sqrt');
txWaveform = upfirdn(txSymbols, rrcFilter, sps);
txWaveform = txWaveform(1:end-filterSpan*sps+1); % 去除滤波器延迟

% 归一化信号功率
txWaveform = txWaveform / sqrt(mean(abs(txWaveform).^2));

%% 功率放大器模型(具有非线性特性)
% Saleh功率放大器模型参数
AMAM = [2.1587, 1.1517];   % AM/AM参数 [alpha_a, beta_a]
AMPM = [4.033, 9.1040];    % AM/PM参数 [alpha_phi, beta_phi]

% 应用功率放大器非线性
paOutput = zeros(size(txWaveform));
for i = 1:length(txWaveform)
    r = abs(txWaveform(i));
    % AM/AM转换
    A = (AMAM(1)*r) / (1 + AMAM(2)*r^2);
    % AM/PM转换
    phi = angle(txWaveform(i)) + (AMPM(1)*r^2)/(1 + AMPM(2)*r^2);
    paOutput(i) = A * exp(1j*phi);
end

% 添加记忆效应(简单的FIR滤波器)
memCoeffs = [0.8, 0.1, -0.05]; % 记忆效应系数
paOutput = filter(memCoeffs, 1, paOutput);

% 归一化输出功率
paOutput = paOutput / sqrt(mean(abs(paOutput).^2));

%% 预失真器设计(间接学习结构)
% 预失真器参数
polyOrder = 5;      % 多项式阶数
memDepth = 3;       % 记忆深度

% 构建回归矩阵
X = buildMemoryPolyMatrix(paOutput, polyOrder, memDepth);

% 计算预失真器系数(线性最小二乘)
dpdCoeffs = X \ txWaveform;

%% 应用预失真处理
% 使用预失真器处理原始信号
dpdInput = txWaveform;
dpdOutput = applyMemoryPoly(dpdInput, dpdCoeffs, polyOrder, memDepth);

% 将预失真后的信号通过功率放大器
paDpdOutput = zeros(size(dpdOutput));
for i = 1:length(dpdOutput)
    r = abs(dpdOutput(i));
    A = (AMAM(1)*r) / (1 + AMAM(2)*r^2);
    phi = angle(dpdOutput(i)) + (AMPM(1)*r^2)/(1 + AMPM(2)*r^2);
    paDpdOutput(i) = A * exp(1j*phi);
end
paDpdOutput = filter(memCoeffs, 1, paDpdOutput);
paDpdOutput = paDpdOutput / sqrt(mean(abs(paDpdOutput).^2));

%% 性能评估
% 计算ACPR(邻道功率比)
acprWithoutDPD = calculateACPR(paOutput, fs, symbolRate);
acprWithDPD = calculateACPR(paDpdOutput, fs, symbolRate);

% 计算EVM(误差矢量幅度)
evmWithoutDPD = calculateEVM(txWaveform, paOutput);
evmWithDPD = calculateEVM(txWaveform, paDpdOutput);

% 计算NMSE(归一化均方误差)
nmseWithoutDPD = 10*log10(mean(abs(txWaveform - paOutput).^2) / mean(abs(txWaveform).^2));
nmseWithDPD = 10*log10(mean(abs(txWaveform - paDpdOutput).^2) / mean(abs(txWaveform).^2));

%% 结果可视化
% 星座图比较
figure('Position', [100, 100, 1200, 800], 'Color', 'white');
subplot(2,2,1);
plot(real(paOutput(1:sps:end)), imag(paOutput(1:sps:end)), '.');
title('无预失真功放输出星座图');
axis square; grid on;
xlim([-1.5 1.5]); ylim([-1.5 1.5]);

subplot(2,2,2);
plot(real(paDpdOutput(1:sps:end)), imag(paDpdOutput(1:sps:end)), '.');
title('有预失真功放输出星座图');
axis square; grid on;
xlim([-1.5 1.5]); ylim([-1.5 1.5]);

% AM-AM特性曲线
inputPower = 20*log10(abs(txWaveform));
outputPowerWithout = 20*log10(abs(paOutput));
outputPowerWithDPD = 20*log10(abs(paDpdOutput));

subplot(2,2,3);
plot(inputPower, outputPowerWithout, '.', 'MarkerSize', 1);
hold on;
plot(inputPower, outputPowerWithDPD, '.', 'MarkerSize', 1);
plot(inputPower, inputPower, 'k--', 'LineWidth', 1.5);
legend('无预失真', '有预失真', '理想线性', 'Location', 'southeast');
xlabel('输入功率 (dB)');
ylabel('输出功率 (dB)');
title('AM-AM特性');
grid on;

% 频谱分析
[psdWithout, f] = pwelch(paOutput, 1024, 512, 1024, fs, 'centered');
[psdWith, ~] = pwelch(paDpdOutput, 1024, 512, 1024, fs, 'centered');

subplot(2,2,4);
plot(f/1e6, 10*log10(psdWithout), 'LineWidth', 1.5);
hold on;
plot(f/1e6, 10*log10(psdWith), 'LineWidth', 1.5);
xlabel('频率 (MHz)');
ylabel('功率谱密度 (dB/Hz)');
title('输出信号频谱');
legend('无预失真', '有预失真');
grid on;
xlim([-10, 10]);

%% 显示性能指标
fprintf('================ 性能指标对比 ================\n');
fprintf('            无预失真      有预失真\n');
fprintf('EVM:      %8.2f%%    %8.2f%%\n', evmWithoutDPD*100, evmWithDPD*100);
fprintf('NMSE:     %8.2f dB   %8.2f dB\n', nmseWithoutDPD, nmseWithDPD);
fprintf('主信道ACPR: %6.2f dB   %6.2f dB\n', acprWithoutDPD(1), acprWithDPD(1));
fprintf('上邻道ACPR: %6.2f dB   %6.2f dB\n', acprWithoutDPD(2), acprWithDPD(2));
fprintf('下邻道ACPR: %6.2f dB   %6.2f dB\n', acprWithoutDPD(3), acprWithDPD(3));
fprintf('==============================================\n');

%% 辅助函数:构建记忆多项式回归矩阵
function X = buildMemoryPolyMatrix(u, K, M)
    % u: 输入信号
    % K: 非线性阶数
    % M: 记忆深度
    
    N = length(u);
    numTerms = K*(M+1);
    X = zeros(N, numTerms);
    
    for m = 0:M
        delaySignal = [zeros(m,1); u(1:end-m)]; % 添加延迟
        for k = 1:K
            colIndex = m*K + k;
            X(:, colIndex) = delaySignal .* abs(delaySignal).^(k-1);
        end
    end
end

%% 辅助函数:应用记忆多项式
function y = applyMemoryPoly(u, coeffs, K, M)
    X = buildMemoryPolyMatrix(u, K, M);
    y = X * coeffs;
end

%% 辅助函数:计算ACPR
function acpr = calculateACPR(signal, fs, symbolRate)
    % 信道带宽定义
    mainChannel = [-symbolRate/2, symbolRate/2];
    upperChannel = [symbolRate/2, 3*symbolRate/2];
    lowerChannel = [-3*symbolRate/2, -symbolRate/2];
    
    % 计算PSD
    [pxx, f] = pwelch(signal, 1024, 512, 1024, fs, 'centered');
    
    % 计算各信道功率
    mainIdx = (f >= mainChannel(1) & f <= mainChannel(2));
    upperIdx = (f >= upperChannel(1) & f <= upperChannel(2));
    lowerIdx = (f >= lowerChannel(1) & f <= lowerChannel(2));
    
    mainPower = bandpower(pxx(mainIdx));
    upperPower = bandpower(pxx(upperIdx));
    lowerPower = bandpower(pxx(lowerIdx));
    
    % 计算ACPR (dBc)
    acprUpper = 10*log10(upperPower / mainPower);
    acprLower = 10*log10(lowerPower / mainPower);
    
    % 返回结果 [主信道, 上邻道, 下邻道]
    acpr = [10*log10(mainPower), acprUpper, acprLower];
end

%% 辅助函数:计算EVM
function evm = calculateEVM(refSignal, testSignal)
    % 对齐信号
    [corr, lag] = xcorr(testSignal, refSignal);
    [~, idx] = max(abs(corr));
    delay = lag(idx);
    alignedSignal = testSignal(max(1,1+delay):min(end,end+delay));
    alignedRef = refSignal(max(1,1-delay):min(end,end-delay));
    
    % 归一化信号
    alignedRef = alignedRef / sqrt(mean(abs(alignedRef).^2));
    alignedSignal = alignedSignal / sqrt(mean(abs(alignedSignal).^2));
    
    % 计算EVM
    error = alignedRef - alignedSignal;
    evm = sqrt(mean(abs(error).^2) / mean(abs(alignedRef).^2));
end

算法说明

1. 64QAM信号生成

  • 生成随机64QAM符号
  • 使用根升余弦滤波器进行脉冲成形
  • 归一化信号功率

2. 功率放大器模型

  • 采用Saleh模型模拟非线性特性:
    • AM/AM转换:A(r)=αar1+βar2A(r) = \frac{\alpha_a r}{1 + \beta_a r^2}A(r)=1+βar2αar
    • AM/PM转换:Φ(r)=ϕ+αϕr21+βϕr2\Phi(r) = \phi + \frac{\alpha_\phi r^2}{1 + \beta_\phi r^2}Φ(r)=ϕ+1+βϕr2αϕr2
  • 添加FIR滤波器模拟记忆效应

3. 预失真器设计

  • 采用记忆多项式模型:
    y(n)=∑k=0K∑m=0Makmx(n−m)∣x(n−m)∣ky(n) = \sum_{k=0}^{K} \sum_{m=0}^{M} a_{km} x(n-m) |x(n-m)|^{k}y(n)=∑k=0K∑m=0Makmx(n−m)∣x(n−m)∣k
  • 使用间接学习结构:
    1. 构建功率放大器输出的回归矩阵
    2. 通过线性最小二乘求解预失真器系数

4. 性能评估指标

  • EVM(误差矢量幅度):衡量星座图失真程度
  • ACPR(邻道功率比):衡量频谱再生程度
  • NMSE(归一化均方误差):系统整体失真度量

参考代码 利用matlab实现64QAM信号的预失真处理 www.youwenfan.com/contentcsk/98721.html

执行结果分析

运行此代码将生成以下结果:

  1. 星座图对比

    • 无预失真时:星座点扩散严重
    • 有预失真时:星座点更集中,接近理想状态
  2. AM-AM特性曲线

    • 无预失真:明显的非线性压缩特性
    • 有预失真:接近理想线性特性
  3. 频谱分析

    • 无预失真:明显的频谱扩展和邻道泄漏
    • 有预失真:频谱更集中,邻道干扰显著降低
  4. 性能指标

    • EVM改善:通常从15-20%降低到1-3%
    • ACPR改善:邻道泄漏降低15-30dB
    • NMSE改善:提高20-30dB
相关推荐
Nebula_g1 小时前
C语言应用实例:硕鼠游戏,田忌赛马,搬桌子,活动选择(贪心算法)
c语言·开发语言·学习·算法·游戏·贪心算法·初学者
爱吃甜品的糯米团子2 小时前
详解 JavaScript 内置对象与包装类型:方法、案例与实战
java·开发语言·javascript
郝学胜-神的一滴2 小时前
Linux下,获取子进程退出值和异常终止信号
linux·服务器·开发语言·c++·程序人生
AI科技星2 小时前
张祥前统一场论动量公式P=m(C-V)误解解答
开发语言·数据结构·人工智能·经验分享·python·线性代数·算法
CodeByV3 小时前
【C++】继承
开发语言·c++
权泽谦3 小时前
用 Python 做一个天气预报桌面小程序(附源码 + 打包与部署指导)
开发语言·python·小程序
ftpeak3 小时前
《Rust+Slint:跨平台GUI应用》第八章 窗体
开发语言·ui·rust·slint
森语林溪3 小时前
大数据环境搭建从零开始(十七):JDK 17 安装与配置完整指南
java·大数据·开发语言·centos·vmware·软件需求·虚拟机
lsx2024064 小时前
HTML 音频(Audio)详解
开发语言