基于MATLAB的PCA+SVM人脸识别系统实现

基于MATLAB的PCA+SVM人脸识别系统实现


一、系统架构设计


二、核心代码

1. 数据加载与预处理
matlab 复制代码
function [X, y] = load_orl_dataset(data_dir)
    % 加载ORL人脸数据集(112x92像素)
    % 输入: data_dir - 数据集路径
    % 输出: X - 特征矩阵 (m×n), y - 标签向量 (m×1)
    
    imgFiles = dir(fullfile(data_dir, '*.pgm'));
    numSamples = length(imgFiles);
    X = zeros(numSamples, 10304); % 112 * 92=10304维
    
    for i = 1:numSamples
        imgPath = fullfile(data_dir, imgFiles(i).name);
        img = imread(imgPath);
        X(i,:) = double(img(:)); % 展平为行向量
    end
    
    % 生成标签(假设文件夹按类别组织)
    y = zeros(numSamples, 1);
    classID = 1;
    for i = 1:40
        idx = (i-1)*10 + 1 : i*10;
        y(idx) = classID;
    end
    classID = classID + 1;
end
2. PCA特征降维
matlab 复制代码
function [X_pca, coeff] = pca_feature_extraction(X, numComponents)
    % PCA降维
    % 输入: X - 原始特征矩阵, numComponents - 保留主成分数
    % 输出: X_pca - 降维后特征, coeff - 特征向量矩阵
    
    [coeff, score, ~] = pca(X);
    X_pca = score(:, 1:numComponents);
end
3. SVM模型训练与识别
matlab 复制代码
function accuracy = train_and_test(X_train, y_train, X_test, y_test)
    % 训练SVM分类器并测试
    % 输入: 训练/测试数据及标签
    % 输出: 识别准确率
    
    % 设置SVM参数
    svmModel = fitcecoc(X_train, y_train, ...
        'Learners', templateSVM('KernelFunction', 'rbf', 'BoxConstraint', 10));
    
    % 预测
    y_pred = predict(svmModel, X_test);
    
    % 计算准确率
    accuracy = sum(y_pred == y_test) / numel(y_test);
end

三、完整流程示例

matlab 复制代码
%% 主程序
clear; clc;

% 加载数据(示例路径)
dataDir = './ORL/s'; 
[X, y] = load_orl_dataset(dataDir);

% 数据划分(70%训练,30%测试)
cv = cvpartition(size(X,1),'HoldOut',0.3);
X_train = X(cv.training,:);
y_train = y(cv.training);
X_test = X(cv.test,:);
y_test = y(cv.test);

% PCA降维(保留前50个主成分)
numPCA = 50;
[X_train_pca, coeff] = pca_feature_extraction(X_train, numPCA);
X_test_pca = X_test * coeff(:,1:numPCA);

% 训练与测试
accuracy = train_and_test(X_train_pca, y_train, X_test_pca, y_test);
fprintf('识别准确率: %.2f%%
', accuracy*100);

参考代码 基于PCA_SVM的人脸识别程序 www.youwenfan.com/contentcsl/64636.html

四、关键功能扩展

1. 特征脸可视化
matlab 复制代码
function plot_eigenfaces(coeff, numFaces)
    % 显示前numFaces个特征脸
    figure;
    for i = 1:numFaces
        eigFace = reshape(coeff(:,i), [112,92]);
        subplot(2,5,i);
        imshow(eigFace, []);
        title(sprintf('Eigenface %d', i));
        axis off;
    end
end

% 调用示例
plot_eigenfaces(coeff, 5);
2. 动态人脸检测(摄像头实时识别)
matlab 复制代码
function live_recognition()
    % 打开摄像头
    cam = webcam();
    figure;
    imshow(im2uint8(snapshot(cam)));
    
    while true
        % 采集人脸
        img = snapshot(cam);
        img_gray = rgb2gray(img);
        face = imcrop(img_gray, [50,50,62,62]); % 裁剪人脸区域
        
        % 特征提取
        face_vector = double(face(:));
        face_pca = face_vector * coeff(:,1:50);
        
        % 识别
        [~, label] = max(predict(svmModel, face_pca));
        imshow(face);
        title(sprintf('ID: %d', label));
        drawnow;
    end
end
相关推荐
RTC老炮2 小时前
webrtc降噪-NoiseEstimator类源码分析与算法原理
算法·webrtc
一 铭2 小时前
Claude Agent Skills:一种基于 Prompt 扩展的元工具架构
人工智能·大模型·llm·prompt
连线Insight2 小时前
小马智行港股上市:自动驾驶从“技术追跑”到“商业领跑”的里程碑
人工智能
xier_ran2 小时前
深度学习:为什么不能将多层神经网络参数全部初始化为零以及如何进行随机初始化
人工智能·深度学习
扫地僧9852 小时前
[特殊字符]用于糖尿病视网膜病变图像生成的生成对抗网络(GAN)
人工智能·神经网络·生成对抗网络
文心快码BaiduComate2 小时前
疯了!双11,百度文心快码帮我省钱又赚钱?
人工智能
大刘讲IT2 小时前
赋能中小企业:基于五大开源模块的AI智能体构建方案与细化拆解
人工智能·经验分享·ai·开源·制造
来让爷抱一个2 小时前
企业级AI知识库新纪元:如何用开源力量重塑知识管理?
人工智能·开源
巴塞罗那的风2 小时前
Eino框架快速搭建出行agent(二)引入12306 mcp
人工智能·golang·mcp