长短期记忆网络(LSTM)入门

背景

普通 RNN 每次只根据当前输入和前一时刻隐藏状态更新,但这样会导致:

1、信息在时间上被反复乘以梯度矩阵,容易 梯度消失/爆炸;

2、记忆"短期"依赖不错,但"长期"记忆难以保留。

LSTM 的核心思想是 引入"细胞状态 " ,让网络有一条可以"长期传递信息"的路径,并通过三个门有选择地更新记忆。

LSTM 的核心结构

每个 LSTM 单元有:

一个 输入门(input gate) 决定写入多少新信息

一个 遗忘门(forget gate)决定丢弃多少旧信息

一个 输出门(output gate)决定输出多少当前记忆

一个 细胞状态(cell state)

相关推荐
2501_904876487 分钟前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
曹文杰151903011220 分钟前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
竣雄35 分钟前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把1 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL1 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很1 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里1 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631291 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛112 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature2 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能