Python编程实战 - Python实用工具与库 - 操作Excel:openpyxl / pandas

在日常数据处理工作中,Excel 是最常见的数据文件格式之一。无论是财务报表、销售统计还是实验数据,Python 都能通过强大的库快速读写和处理 Excel 文件。其中最常用的就是 openpyxlpandas

本文将带你了解这两个库的核心用法,并通过实战示例展示如何高效操作 Excel 文件。


一、openpyxl:原生 Excel 文件操作库

openpyxl 是一个专门用于读写 .xlsx 文件的纯 Python 库。它支持单元格读写、样式设置、图表创建等高级功能,适合对 Excel 文件结构进行精细控制的场景。

1. 安装 openpyxl

bash 复制代码
pip install openpyxl

2. 创建 Excel 文件

python 复制代码
from openpyxl import Workbook

# 创建一个新的工作簿
wb = Workbook()
ws = wb.active

# 写入数据
ws['A1'] = '姓名'
ws['B1'] = '成绩'
ws.append(['Alice', 95])
ws.append(['Bob', 88])

# 保存文件
wb.save('成绩表.xlsx')

运行后,你将得到一个包含学生成绩的 Excel 文件。

3. 读取 Excel 文件

python 复制代码
from openpyxl import load_workbook

wb = load_workbook('成绩表.xlsx')
ws = wb.active

for row in ws.iter_rows(values_only=True):
    print(row)

输出结果:

arduino 复制代码
('姓名', '成绩')
('Alice', 95)
('Bob', 88)

4. 修改单元格内容

python 复制代码
ws['B2'] = 98  # 修改 Alice 的成绩
wb.save('成绩表_修改.xlsx')

5. 设置单元格样式(可选)

python 复制代码
from openpyxl.styles import Font, Alignment

ws['A1'].font = Font(bold=True, color="FF0000")
ws['A1'].alignment = Alignment(horizontal='center')
wb.save('成绩表_格式.xlsx')

二、pandas:高效的数据分析利器

如果你更关注数据分析和批量处理,而不是 Excel 的格式细节,那么 pandas 是更高效的选择。 pandas 可以轻松地读写 Excel 文件并与 DataFrame 无缝结合。

1. 安装 pandas

bash 复制代码
pip install pandas openpyxl

2. 从 Excel 读取数据

python 复制代码
import pandas as pd

df = pd.read_excel('成绩表.xlsx')
print(df)

输出:

markdown 复制代码
     姓名  成绩
0  Alice  95
1    Bob  88

3. 修改数据并写回 Excel

python 复制代码
df.loc[df['姓名'] == 'Bob', '成绩'] = 90
df.to_excel('成绩表_更新.xlsx', index=False)

4. 多表格(多 Sheet)操作

python 复制代码
with pd.ExcelWriter('多表格.xlsx') as writer:
    df.to_excel(writer, sheet_name='一班', index=False)
    df.to_excel(writer, sheet_name='二班', index=False)

5. 从多个 Excel 文件合并数据

python 复制代码
import glob

files = glob.glob("data/*.xlsx")
all_data = pd.concat((pd.read_excel(f) for f in files))
all_data.to_excel('合并结果.xlsx', index=False)

三、openpyxl 与 pandas 的比较

特性 openpyxl pandas
文件类型 .xlsx .xls, .xlsx, .csv
操作粒度 单元格级别 表格/数据级别
适合场景 精细化格式控制、表格样式、美化 批量处理、分析计算、数据转换
是否支持样式 ✅ 是 ❌ 否(仅限数据)

结论:

  • 如果你需要精细控制 Excel 外观(如模板、美化),推荐 openpyxl
  • 如果你主要关注数据计算和处理,推荐 pandas

四、实战案例:销售数据汇总

假设你有多个销售 Excel 文件(如每月销售数据),需要快速汇总并输出总销售额。

python 复制代码
import pandas as pd
import glob

# 合并所有销售文件
files = glob.glob("sales/*.xlsx")
df = pd.concat([pd.read_excel(f) for f in files])

# 汇总计算
summary = df.groupby('销售员')['销售额'].sum().reset_index()

# 导出结果
summary.to_excel('销售汇总.xlsx', index=False)
print("汇总完成!")

这段代码可以帮你自动读取所有销售文件,统计每位销售员的总销售额,并生成一个新的汇总文件。


五、总结

通过本文的学习,你应该掌握了以下内容:

  1. 使用 openpyxl 创建、修改和美化 Excel 文件。
  2. 使用 pandas 快速读写、分析和汇总 Excel 数据。
  3. 理解两者的差异与适用场景。
  4. 掌握一个实战级的数据汇总案例。

无论你是做数据分析、办公自动化,还是构建数据驱动应用,Excel 操作都是 Python 工具箱中不可或缺的一环。 下一步,你可以继续学习如何用 pandas + Matplotlib 实现数据可视化,为数据报告添加图形洞察。

相关推荐
leobertlan3 小时前
2025年终总结
前端·后端·程序员
面向Google编程3 小时前
从零学习Kafka:数据存储
后端·kafka
冷雨夜中漫步4 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴4 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再4 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
易安说AI4 小时前
Claude Opus 4.6 凌晨发布,我体验了一整晚,说说真实感受。
后端
易安说AI4 小时前
Ralph Loop 让Claude无止尽干活的牛马...
前端·后端
易安说AI4 小时前
用 Claude Code 远程分析生产日志,追踪 Claude Max 账户被封原因
后端
颜酱5 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
喵手6 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控