李宏毅机器学习笔记

目录

摘要

Abstract

1.optimizer

[2.network architecture search(NAS)](#2.network architecture search(NAS))


摘要

本篇文章继续学习李宏毅老师2025春季机器学习课程,学习内容是meta learning可训练的参数,如optimizer相关的参数,network架构相关的参数。

1.optimizer

meta learning除了可以学习初始化的参数,还可以学optimizer。在更新参数时我们需要决定learning rate等参数,这些hyper parameter可以用meta learning学出来的。

下图的实验结果是自动根据训练任务学出来的,橙色的是学习出来的optimizer,其他的颜色是其他的方法。训练在MNIST上测试在NIST上结果还不错(第一行的测试结果),但是,训练在一层network上,测试在两层network上依然可以学起来,但是改一下active function就不行了(sigmoid更改为ReLu)。

2.network architecture search(NAS)

meta learning也可以训练network架构,训练network架构研究就叫做network architecture search(NAS)。此时的就是network架构。

如果是network架构做微分就有问题,当 无法算微分时,可以尝试用reinforce learning硬做。具体如果实现呢?我们就需要把当作agent的参数,这个agent的输出就是network架构相关的hyper parameter。接下来需要训练agent让他maximize一个reward,reward直接设置成

下图可以帮助理解NAS在做什么。将agent当作RNN,每次会输出一个与network架构有关的参数,例如先输出filter的数量,在输出filter的高等等,有了这些参数之后就根据这些参数建出一个network,建出这个network之后去训练这个network,之后继续做reinforce learning,可以把这个network在测试资料上的accuracy当作reward去训练agent。

相关推荐
Dingdangcat866 分钟前
【YOLOv8改进实战】使用Ghost模块优化P2结构提升涂胶缺陷检测精度_1
人工智能·yolo·目标跟踪
希艾席帝恩1 小时前
智慧城市建设中,数字孪生的价值在哪里?
人工智能·低代码·私有化部署·数字孪生·数字化转型
我的offer在哪里1 小时前
开源 AI 生成游戏平台:原理、开源项目与落地实战指南
人工智能·游戏·开源
wdfk_prog1 小时前
[Linux]学习笔记系列 -- [drivers][dma]dmapool
linux·笔记·学习
qidun2101 小时前
埃夫特机器人防护服使用范围详解-避免十大应用误区
网络·人工智能
Σίσυφος19001 小时前
PCL Point-to-Point ICP详解
人工智能·算法
PaperRed ai写作降重助手1 小时前
AI 论文写作工具排名(实测不踩坑)
人工智能·aigc·ai写作·论文写作·智能降重·辅助写作·降重复率
ktoking1 小时前
Stock Agent AI 模型的选股器实现 [五]
人工智能·python
qwy7152292581631 小时前
10-图像的翻转
人工智能·opencv·计算机视觉
霍格沃兹测试学院-小舟畅学1 小时前
Playwright企业级测试架构设计:模块化与可扩展性
人工智能·测试工具