python
复制代码
import json
import multiprocessing
import os
import torch
from torch import nn
from d2l import torch as d2l
###############################################################################################
#下载预训练的bert模型:base and small
d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.torch.zip',
'225d66f04cae318b841a13d32af3acc165f253ac')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.torch.zip',
'c72329e68a732bef0452e4b96a1c341c8910f81f')
###############################################################################################
#加载预训练模型:
def load_pretrained_model(pretrained_model,num_hiddens,ffn_num_hiddens,
num_heads,num_layers,dropout,max_len,devices):
data_dir=d2l.download_extract(pretrained_model)
vocab=d2l.Vocab()
vocab.idx_to_token=json.load(open(os.path.join(data_dir,'vocab.json')))
vocab.token_to_idx = {token: idx for idx, token in enumerate(
vocab.idx_to_token)}
bert = d2l.BERTModel(len(vocab), num_hiddens, norm_shape=[256],
ffn_num_input=256, ffn_num_hiddens=ffn_num_hiddens,
num_heads=4, num_layers=2, dropout=0.2,
max_len=max_len, key_size=256, query_size=256,
value_size=256, hid_in_features=256,
mlm_in_features=256, nsp_in_features=256)
bert.load_state_dict(torch.load(os.path.join(data_dir,'pretrained.params')))
return bert,vocab
###############################################################################################
class SNLIBERTDataset(torch.utils.data.Dataset):
def __init__(self, dataset, max_len, vocab=None):
all_premise_hypothesis_tokens = [[
p_tokens, h_tokens] for p_tokens, h_tokens in zip(
*[d2l.tokenize([s.lower() for s in sentences])
for sentences in dataset[:2]])]
self.labels = torch.tensor(dataset[2])
self.vocab = vocab
self.max_len = max_len
(self.all_token_ids, self.all_segments,
self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens)
print('read ' + str(len(self.all_token_ids)) + ' examples')
def _preprocess(self, all_premise_hypothesis_tokens):
pool = multiprocessing.Pool(4) # 使用4个进程
out = pool.map(self._mp_worker, all_premise_hypothesis_tokens)
all_token_ids = [
token_ids for token_ids, segments, valid_len in out]
all_segments = [segments for token_ids, segments, valid_len in out]
valid_lens = [valid_len for token_ids, segments, valid_len in out]
return (torch.tensor(all_token_ids, dtype=torch.long),
torch.tensor(all_segments, dtype=torch.long),
torch.tensor(valid_lens))
def _mp_worker(self, premise_hypothesis_tokens):
p_tokens, h_tokens = premise_hypothesis_tokens
self._truncate_pair_of_tokens(p_tokens, h_tokens)
tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens)
token_ids = self.vocab[tokens] + [self.vocab['<pad>']] \
* (self.max_len - len(tokens))
segments = segments + [0] * (self.max_len - len(segments))
valid_len = len(tokens)
return token_ids, segments, valid_len
def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
# 为BERT输入中的'<CLS>'、'<SEP>'和'<SEP>'词元保留位置
while len(p_tokens) + len(h_tokens) > self.max_len - 3:
if len(p_tokens) > len(h_tokens):
p_tokens.pop()
else:
h_tokens.pop()
def __getitem__(self, idx):
return (self.all_token_ids[idx], self.all_segments[idx],
self.valid_lens[idx]), self.labels[idx]
def __len__(self):
return len(self.all_token_ids)
###############################################################################################
class BERTClassifier(nn.Module):
def __init__(self, bert):
super(BERTClassifier,self).__init__()
self.encoder=bert.encoder
self.hidden=bert.hidden
self.output=nn.Linear(256,3)
def forward(self,inputs):
tokens_X,segments_X,valid_len_x=inputs
encoded_X=self.encoder(tokens_X,segments_X,valid_len_x)
#只取<CLS> token进行分类
return self.output(self.hidden(encoded_X[:,0,:]))
###############################################################################################
#预训练模型加载
devices = d2l.try_all_gpus()
bert,vocab=load_pretrained_model('bert.small',num_hiddens=256,ffn_num_hiddens=512,
num_heads=4,num_layers=2,dropout=0.1,max_len=512,devices=devices)
#数据集加载
batch_size, max_len, num_workers = 512, 128,d2l.get_dataloader_workers()
data_dir=r"/data1/zhongyan/deepl/pytorch/13_应用自然语言模型/snli_1.0"
train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab)
test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab)
train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(test_set, batch_size,num_workers=num_workers)
#模型训练与测试:
print("1")
net = BERTClassifier(bert)
lr,num_epochs=1e-4,5
trainer=torch.optim.Adam(net.parameters(),lr=lr)
loss=nn.CrossEntropyLoss(reduction='none')
d2l.train_ch13(net,train_iter,test_iter,loss,trainer,num_epochs,devices)
###############################################################################################