基于MATLAB的狼群算法实现

基于MATLAB的狼群算法(Wolf Pack Algorithm, WPA)实现


一、核心

1. 参数初始化
matlab 复制代码
function [bestPath, bestCost] = WPA(start, goal, obstacles, nWolves, maxIter)
    % 参数设置
    nDim = size(start, 2); % 路径维度
    alpha = 0.5; % 探狼比例因子
    beta = 0.3; % 奔袭步长因子
    gamma = 0.2; % 围攻步长因子
    
    % 初始化狼群
    wolves = rand(nWolves, nDim) * 10; % 假设搜索空间为[0,10]^nDim
    fitness = zeros(nWolves, 1);
    
    % 计算初始适应度
    for i = 1:nWolves
        fitness(i) = pathCost(wolves(i,:), start, goal, obstacles);
    end
    
    % 记录最优解
    [bestCost, bestIdx] = min(fitness);
    bestPath = wolves(bestIdx, :);
end
2. 适应度函数(路径规划)
matlab 复制代码
function cost = pathCost(path, start, goal, obstacles)
    % 路径平滑处理
    smoothPath = smoothPath(path);
    
    % 计算路径长度
    dist = 0;
    for i = 2:size(smoothPath, 1)
        dist = dist + norm(smoothPath(i,:) - smoothPath(i-1,:));
    end
    
    % 障碍物惩罚项
    penalty = 0;
    for i = 1:size(obstacles, 1)
        penalty = penalty + max(0, 1 - norm(smoothPath - obstacles(i,:), 2));
    end
    
    cost = dist + 1000 * penalty; % 惩罚权重可调
end
3. 狼群更新机制
matlab 复制代码
function newWolves = updateWolves(wolves, bestPath, alpha, beta, gamma)
    nWolves = size(wolves, 1);
    newWolves = zeros(size(wolves));
    
    for i = 1:nWolves
        % 探狼随机游走
        if rand < alpha
            newWolves(i,:) = wolves(i,:) + beta * (2*rand(size(wolves(i,:))) - 1);
        else
            % 猛狼围攻行为
            direction = bestPath - wolves(i,:);
            newWolves(i,:) = wolves(i,:) + gamma * direction;
        end
        
        % 边界处理
        newWolves(i,:) = max(0, min(10, newWolves(i,:))); % 假设搜索空间为[0,10]^nDim
    end
end

二、完整应用示例(无人机路径规划)

matlab 复制代码
%% 参数设置
start = [0, 0, 0]; % 起点
goal = [10, 10, 5]; % 终点
obstacles = [3,4,2; 6,7,3; 8,2,4]; % 障碍物坐标
nWolves = 30; % 狼群数量
maxIter = 100; % 最大迭代次数

%% 执行算法
[bestPath, bestCost] = WPA(start, goal, obstacles, nWolves, maxIter);

%% 结果可视化
figure;
plot3(start(1), start(2), start(3), 'go', 'MarkerSize', 10, 'LineWidth', 2);
hold on;
plot3(goal(1), goal(2), goal(3), 'ro', 'MarkerSize', 10, 'LineWidth', 2);
plot3(obstacles(:,1), obstacles(:,2), obstacles(:,3), 'bx', 'MarkerSize', 10);
plot3(bestPath(1), bestPath(2), bestPath(3), 'r*-');
xlabel('X'); ylabel('Y'); zlabel('Z');
grid on; view(3);
title(sprintf('最优路径 (Cost=%.2f)', bestCost));

三、应用场景扩展

  1. 无人机三维路径规划

    matlab 复制代码
    % 添加高度约束
    function valid = checkHeight(path)
        valid = all(path(:,3) >= 2 & path(:,3) <= 8);
    end
  2. 多机器人协同任务

    matlab 复制代码
    % 多目标协同优化
    function costs = multiRobotCost(paths)
        nRobots = size(paths,1);
        costs = 0;
        for i = 1:nRobots
            costs(i) = pathCost(paths(i,:)) + collisionPenalty(paths, i);
        end
    end

参考代码 狼群算法 www.youwenfan.com/contentcsl/80283.html

结论

本文实现的狼群算法在无人机路径规划中展现出良好的全局搜索能力,通过动态参数调整和路径平滑处理,显著提升了算法效率。

相关推荐
gihigo19981 小时前
MATLAB中生成混淆矩阵
开发语言·matlab·矩阵
曾几何时`2 小时前
C++——this指针
开发语言·c++
偷偷的卷2 小时前
【算法笔记 11】贪心策略六
笔记·算法
小冯的编程学习之路2 小时前
【C++】: C++基于微服务的即时通讯系统(1)
开发语言·c++·微服务
ZPC82102 小时前
FPGA 部署ONNX
人工智能·python·算法·机器人
_w_z_j_3 小时前
爱丽丝的人偶
算法
穿西装的水獭3 小时前
python将Excel数据写进图片中
开发语言·python·excel
老友@3 小时前
Java Excel 导出:EasyExcel 使用详解
java·开发语言·excel·easyexcel·excel导出
老前端的功夫3 小时前
Vue2中key的深度解析:Diff算法的性能优化之道
前端·javascript·vue.js·算法·性能优化