安装 NVIDIA Container Runtime(含离线安装)

由于我要离线安装,所以我在联网状态下按照离线方式进行的安装,但下载是联网状态。

第一步:在联网状态下下载所需.deb包(在ubuntu 22.04.5上运行)

1. 添加 NVIDIA 仓库(仅用于下载,不安装)

设置 distribution 变量

distribution=(. /etc/os-release;echo ID$VERSION_ID)

添加 GPG 密钥 curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg

添加正确的仓库(使用通用 deb 路径)

echo "deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://nvidia.github.io/libnvidia-container/stable/deb/amd64 /" | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

sudo apt update

2. 创建一个目录用于存放 .deb 文件

mkdir -p ~/nvidia-offline && cd ~/nvidia-offline

3. 下载 nvidia-container-toolkit 及其所有依赖(不安装)

apt download $(apt-cache depends --recurse --no-recommends --no-suggests --no-conflicts --no-breaks --no-replaces --no-enhances nvidia-container-toolkit | grep "^\w" | sort -u)

4. (可选)同时下载 GPG 公钥文件

cp /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg ./

5. 打包

tar -czvf nvidia-container-toolkit-offline.tar.gz *.deb nvidia-container-toolkit-keyring.gpg

第二步:将文件拷贝到离线 WSL2 环境

  • nvidia-container-toolkit-offline.tar.gz 拷贝到 Windows 主机(例如 C:\offline\
  • 在 WSL2 中访问:/mnt/c/offline/
  • 解压:

mkdir -p ~/nvidia-offline

tar -xzvf /mnt/c/offline/nvidia-container-toolkit-offline.tar.gz -C ~/nvidia-offline

cd ~/nvidia-offline

第三步:在离线 Ubuntu (WSL2) 中安装

1. 安装 GPG 密钥(用于验证,虽离线但保持配置一致)

sudo cp nvidia-container-toolkit-keyring.gpg /usr/share/keyrings/

2. 安装所有 .deb 包(注意顺序:依赖先装)

sudo dpkg -i *.deb

如果提示依赖错误(因为顺序问题),运行:

sudo apt-get install -f

第四步:配置 Docker runtime

sudo nvidia-ctk runtime configure --runtime=docker

第五步:重启 Docker

之前我启用了systemd,就是添加到wsl.conf文件那个,所以:

sudo systemctl restart docker #看到 active (running)

第六步:离线测试

docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi

这里报错了,显示:

Unable to find image 'nvidia/cuda:12.4.0-base-ubuntu22.04' locally

解决方案:

1.将 cuda-12.4-base.tar 拷贝到你的离线 WSL2 机器

例如放在 Windows 的 C:\offline\cuda-12.4-base.tar,则在 WSL2 中路径为:

/mnt/c/offline/cuda-12.4-base.tar

2.在离线 WSL2 中加载镜像:

docker load -i /mnt/c/offline/cuda-12.4-base.tar

#输出类似于:Loaded image: nvidia/cuda:12.4.0-base-ubuntu22.04

再次运行测试命令!!!

docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi

成功显示 GPU 信息!!!!跟用nvidia-smi的一样

相关推荐
说私域3 分钟前
基于AI智能名片链动2+1模式预约服务商城小程序的数据管理与系统集成研究
大数据·人工智能·小程序
AC赳赳老秦8 分钟前
技术文档合著:DeepSeek辅助多人协作文档的风格统一与内容补全
android·大数据·人工智能·微服务·golang·自动化·deepseek
咚咚王者9 分钟前
人工智能之核心基础 机器学习 第十四章 半监督与自监督学习总结归纳
人工智能·学习·机器学习
风栖柳白杨16 分钟前
【语音识别】SenseVoice非流式改流式
人工智能·语音识别
Aloudata17 分钟前
企业落地 AI 数据分析,如何做好敏感数据安全防护?
人工智能·安全·数据挖掘·数据分析·chatbi·智能问数·dataagent
安达发公司17 分钟前
安达发|煤炭行业APS高级排产:开启高效生产新时代
大数据·人工智能·aps高级排程·安达发aps·车间排产软件·aps高级排产
中科天工18 分钟前
如何实现工业4.0智能制造的自动化包装解决方案?
大数据·人工智能·智能
ai_top_trends25 分钟前
AI 生成 PPT 工具横评:效率、质量、稳定性一次说清
人工智能·python·powerpoint
三千世界00628 分钟前
Claude Code Agent Skills 自动发现原理详解
人工智能·ai·大模型·agent·claude·原理
云和恩墨31 分钟前
数据库运维的下一步:Bethune X以AI实现从可观测到可处置
人工智能·aiops·数据库监控·数据库运维·数据库巡检