Comma-Separated List Output Parser in LangChain

https://python.langchain.com.cn/docs/modules/model_io/output_parsers/comma_separated

Comma-Separated List Output Parser in LangChain

This content is based on LangChain's official documentation (langchain.com.cn) and explains the CommaSeparatedListOutputParser---a tool to convert LLM outputs into comma-separated lists---in simplified terms. It strictly preserves original source codes, retains all knowledge points, and avoids arbitrary additions or modifications.

1. What is CommaSeparatedListOutputParser?

This output parser converts unstructured LLM responses into clean, comma-separated lists (Python lists).

  • Use case: When you need the LLM to return a list of items (e.g., ice cream flavors, book titles) and want to directly use the result as a Python list (no manual string splitting).
  • Key feature: It provides built-in format_instructions to guide the LLM to output comma-separated items, ensuring the parser can correctly parse the result.

2. Step 1: Import Required Modules

The code below imports all necessary classes---exactly as in the original documentation:

python 复制代码
from langchain.output_parsers import CommaSeparatedListOutputParser
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI  # Included as in original import (even if not used in the example)

3. Step 2: Initialize the Output Parser

Create an instance of CommaSeparatedListOutputParser and get its format instructions (guidelines for the LLM to follow):

python 复制代码
output_parser = CommaSeparatedListOutputParser()
format_instructions = output_parser.get_format_instructions()  # Tells LLM to output comma-separated items

Note: The format_instructions automatically generated by the parser typically says: "Your response should be a list of comma-separated values. Do not include any additional text."

4. Step 3: Create a Prompt Template

Define a prompt template that includes the LLM task and the format instructions. This ensures the LLM outputs items in a comma-separated format:

python 复制代码
prompt = PromptTemplate(
    template="List five {subject}.\n{format_instructions}",
    input_variables=["subject"],  # Dynamic input (e.g., "ice cream flavors")
    partial_variables={"format_instructions": format_instructions}  # Fixed format guidelines
)

5. Step 4: Initialize the LLM and Generate Output

Use OpenAI (with temperature=0 for consistent results) to generate a response based on the formatted prompt:

python 复制代码
model = OpenAI(temperature=0)
_input = prompt.format(subject="ice cream flavors")  # Fill in the dynamic "subject"
output = model(_input)  # LLM generates comma-separated items

6. Step 5: Parse the LLM Output into a Python List

Use the output parser to convert the LLM's string output into a structured Python list. The original code and output are preserved exactly:

Code:

python 复制代码
output_parser.parse(output)

Output (exact as original):

python 复制代码
['Vanilla',
 'Chocolate',
 'Strawberry',
 'Mint Chocolate Chip',
 'Cookies and Cream']

Key Takeaways

  • CommaSeparatedListOutputParser simplifies converting LLM text outputs into usable Python lists.
  • get_format_instructions() ensures the LLM follows the correct output format (comma-separated items).
  • The prompt template combines the task (e.g., "List five ice cream flavors") and format guidelines for reliability.
  • Works with both LLMs (e.g., OpenAI) and chat models (e.g., ChatOpenAI)---the core logic remains the same.
相关推荐
Ashley_Amanda6 小时前
Python入门知识点梳理
开发语言·windows·python
aloha_7896 小时前
langchain4j如何使用mcp
java·人工智能·python·langchain
玖釉-6 小时前
[Vulkan 学习之路] 01 - 迈入高性能图形开发的大门 (Windows 环境搭建)
c++·windows·图形渲染
liulilittle7 小时前
Windows 11 Hyper-V 虚拟机双网卡网络中断无法恢复问题
网络·windows·虚拟化·hyper-v·vps·vm·vds
一头小火烧7 小时前
基于大模型的发票识别系统
ai·langchain
ValidationExpression8 小时前
LangChain1.0学习
学习·ai·langchain·fastapi
十五年专注C++开发8 小时前
CMake基础:foreach详解
linux·c++·windows·cmake·跨平台编译
sjg200104148 小时前
GoFrame学习随便记2
windows·学习
2301_765715148 小时前
深入操作系统核心:全面解析存储管理机制
windows
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ8 小时前
List、Set的相似性
windows·tomcat·list