Comma-Separated List Output Parser in LangChain

https://python.langchain.com.cn/docs/modules/model_io/output_parsers/comma_separated

Comma-Separated List Output Parser in LangChain

This content is based on LangChain's official documentation (langchain.com.cn) and explains the CommaSeparatedListOutputParser---a tool to convert LLM outputs into comma-separated lists---in simplified terms. It strictly preserves original source codes, retains all knowledge points, and avoids arbitrary additions or modifications.

1. What is CommaSeparatedListOutputParser?

This output parser converts unstructured LLM responses into clean, comma-separated lists (Python lists).

  • Use case: When you need the LLM to return a list of items (e.g., ice cream flavors, book titles) and want to directly use the result as a Python list (no manual string splitting).
  • Key feature: It provides built-in format_instructions to guide the LLM to output comma-separated items, ensuring the parser can correctly parse the result.

2. Step 1: Import Required Modules

The code below imports all necessary classes---exactly as in the original documentation:

python 复制代码
from langchain.output_parsers import CommaSeparatedListOutputParser
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI  # Included as in original import (even if not used in the example)

3. Step 2: Initialize the Output Parser

Create an instance of CommaSeparatedListOutputParser and get its format instructions (guidelines for the LLM to follow):

python 复制代码
output_parser = CommaSeparatedListOutputParser()
format_instructions = output_parser.get_format_instructions()  # Tells LLM to output comma-separated items

Note: The format_instructions automatically generated by the parser typically says: "Your response should be a list of comma-separated values. Do not include any additional text."

4. Step 3: Create a Prompt Template

Define a prompt template that includes the LLM task and the format instructions. This ensures the LLM outputs items in a comma-separated format:

python 复制代码
prompt = PromptTemplate(
    template="List five {subject}.\n{format_instructions}",
    input_variables=["subject"],  # Dynamic input (e.g., "ice cream flavors")
    partial_variables={"format_instructions": format_instructions}  # Fixed format guidelines
)

5. Step 4: Initialize the LLM and Generate Output

Use OpenAI (with temperature=0 for consistent results) to generate a response based on the formatted prompt:

python 复制代码
model = OpenAI(temperature=0)
_input = prompt.format(subject="ice cream flavors")  # Fill in the dynamic "subject"
output = model(_input)  # LLM generates comma-separated items

6. Step 5: Parse the LLM Output into a Python List

Use the output parser to convert the LLM's string output into a structured Python list. The original code and output are preserved exactly:

Code:

python 复制代码
output_parser.parse(output)

Output (exact as original):

python 复制代码
['Vanilla',
 'Chocolate',
 'Strawberry',
 'Mint Chocolate Chip',
 'Cookies and Cream']

Key Takeaways

  • CommaSeparatedListOutputParser simplifies converting LLM text outputs into usable Python lists.
  • get_format_instructions() ensures the LLM follows the correct output format (comma-separated items).
  • The prompt template combines the task (e.g., "List five ice cream flavors") and format guidelines for reliability.
  • Works with both LLMs (e.g., OpenAI) and chat models (e.g., ChatOpenAI)---the core logic remains the same.
相关推荐
lucky670710 小时前
Windows 上彻底卸载 Node.js
windows·node.js
编程小白202611 小时前
从 C++ 基础到效率翻倍:Qt 开发环境搭建与Windows 神级快捷键指南
开发语言·c++·windows·qt·学习
铉铉这波能秀12 小时前
LeetCode Hot100数据结构背景知识之列表(List)Python2026新版
数据结构·leetcode·list
凯子坚持 c12 小时前
CANN 性能剖析实战:从原始事件到交互式火焰图
windows·microsoft
开开心心就好13 小时前
发票合并打印工具,多页布局设置实时预览
linux·运维·服务器·windows·pdf·harmonyos·1024程序员节
獨枭13 小时前
PyCharm 跑通 SAM 全流程实战
windows
仙剑魔尊重楼14 小时前
音乐制作电子软件FL Studio2025.2.4.5242中文版新功能介绍
windows·音频·录屏·音乐·fl studio
PHP小志14 小时前
Windows 服务器怎么修改密码和用户名?账户被系统锁定如何解锁
windows
JaydenAI15 小时前
[拆解LangChain执行引擎] ManagedValue——一种特殊的只读虚拟通道
python·langchain
专注VB编程开发20年16 小时前
vb.net datatable新增数据时改用数组缓存
java·linux·windows