Prompts for Chat Models in LangChain

https://python.langchain.com.cn/docs/modules/model_io/models/chat/how_to/prompts

Prompts for Chat Models in LangChain

This content is based on LangChain's official documentation (langchain.com.cn) and explains prompts for chat models---which are built around messages (not just plain text)---in simplified terms. It strictly preserves all original source codes, examples, and knowledge points without any additions or modifications.

1. Key Feature of Chat Model Prompts

Prompts for chat models are structured around messages (e.g., system messages, human messages, AI messages) rather than single blocks of text.

  • Use MessagePromptTemplate (and its subclasses like SystemMessagePromptTemplate, HumanMessagePromptTemplate) to create reusable message templates.
  • Combine multiple MessagePromptTemplates into a ChatPromptTemplate.
  • Use ChatPromptTemplate.format_prompt() to generate a PromptValue, which can be converted to a string or message objects (for chat models).

2. Step 1: Import Required Modules

The code below imports all necessary classes---exactly as in the original documentation:

python 复制代码
from langchain import PromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

Note: A chat model (e.g., ChatOpenAI) is required to run the final step, but it is not imported in the original documentation---we will reference it as chat (consistent with the original code).

3. Method 1: Create Message Templates with from_template

This is a concise way to build MessagePromptTemplates directly from template strings.

Step 3.1: Create System and Human Message Templates

python 复制代码
# System message template: Defines the assistant's role (translator)
template = "You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)

# Human message template: Defines the user's input (text to translate)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

Step 3.2: Combine into ChatPromptTemplate

python 复制代码
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

Step 3.3: Format and Run the Prompt

Use format_prompt() to fill in the placeholders, convert to messages, and pass to the chat model. The original code and output are preserved exactly:

python 复制代码
# Get formatted messages and pass to the chat model
chat(chat_prompt.format_prompt(
    input_language="English", 
    output_language="French", 
    text="I love programming."
).to_messages())

Output (exact as original):

复制代码
AIMessage(content="J'adore la programmation.", additional_kwargs={})

4. Method 2: Create Message Templates with External PromptTemplate

For more flexibility, you can first define a PromptTemplate and then pass it to SystemMessagePromptTemplate.

Step 4.1: Create an External PromptTemplate

python 复制代码
prompt = PromptTemplate(
    template="You are a helpful assistant that translates {input_language} to {output_language}.",
    input_variables=["input_language", "output_language"],  # Explicitly list variables
)

Step 4.2: Wrap into SystemMessagePromptTemplate

python 复制代码
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)

Note: You can combine this system message prompt with the same human_message_prompt (from Method 1) into a ChatPromptTemplate and run it---same as Step 3.2 and 3.3.

Key Takeaways

  • Chat model prompts are built with message templates (e.g., SystemMessagePromptTemplate).
  • Two ways to create message templates: from_template (concise) or external PromptTemplate (flexible).
  • ChatPromptTemplate.from_messages() combines multiple message templates.
  • format_prompt().to_messages() converts the template to chat-model-compatible messages.
相关推荐
ba_pi31 分钟前
每天写点什么2026-01-13-Langchain-Chatchat及开发环境
jupyter·langchain·ollama
BlueBirdssh36 分钟前
linux 内核通过 dts 设备树 配置pcie 控制器 各种参数和中断等, 那freeRTOS 是通过直接设置PCIe寄存器吗
linux
小目标一个亿1 小时前
Windows平台Nginx配置web账号密码验证
linux·前端·nginx
记得开心一点嘛1 小时前
Redis封装类
java·redis
lkbhua莱克瓦241 小时前
进阶-存储过程3-存储函数
java·数据库·sql·mysql·数据库优化·视图
Aotman_1 小时前
Element-UI Message Box弹窗 使用$confirm方法自定义模版内容,修改默认样式
linux·运维·前端
计算机程序设计小李同学1 小时前
基于SSM框架的动画制作及分享网站设计
java·前端·后端·学习·ssm
老蒋每日coding1 小时前
AI智能体设计模式系列(三)—— 并行化模式
langchain·ai编程
鱼跃鹰飞1 小时前
JMM 三大特性(原子性 / 可见性 / 有序性)面试精简版
java·jvm·面试
该怎么办呢2 小时前
基于cesium的三维不动产登记系统的设计与实现(毕业设计)
java·毕业设计