Prompts for Chat Models in LangChain

https://python.langchain.com.cn/docs/modules/model_io/models/chat/how_to/prompts

Prompts for Chat Models in LangChain

This content is based on LangChain's official documentation (langchain.com.cn) and explains prompts for chat models---which are built around messages (not just plain text)---in simplified terms. It strictly preserves all original source codes, examples, and knowledge points without any additions or modifications.

1. Key Feature of Chat Model Prompts

Prompts for chat models are structured around messages (e.g., system messages, human messages, AI messages) rather than single blocks of text.

  • Use MessagePromptTemplate (and its subclasses like SystemMessagePromptTemplate, HumanMessagePromptTemplate) to create reusable message templates.
  • Combine multiple MessagePromptTemplates into a ChatPromptTemplate.
  • Use ChatPromptTemplate.format_prompt() to generate a PromptValue, which can be converted to a string or message objects (for chat models).

2. Step 1: Import Required Modules

The code below imports all necessary classes---exactly as in the original documentation:

python 复制代码
from langchain import PromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

Note: A chat model (e.g., ChatOpenAI) is required to run the final step, but it is not imported in the original documentation---we will reference it as chat (consistent with the original code).

3. Method 1: Create Message Templates with from_template

This is a concise way to build MessagePromptTemplates directly from template strings.

Step 3.1: Create System and Human Message Templates

python 复制代码
# System message template: Defines the assistant's role (translator)
template = "You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)

# Human message template: Defines the user's input (text to translate)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

Step 3.2: Combine into ChatPromptTemplate

python 复制代码
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

Step 3.3: Format and Run the Prompt

Use format_prompt() to fill in the placeholders, convert to messages, and pass to the chat model. The original code and output are preserved exactly:

python 复制代码
# Get formatted messages and pass to the chat model
chat(chat_prompt.format_prompt(
    input_language="English", 
    output_language="French", 
    text="I love programming."
).to_messages())

Output (exact as original):

复制代码
AIMessage(content="J'adore la programmation.", additional_kwargs={})

4. Method 2: Create Message Templates with External PromptTemplate

For more flexibility, you can first define a PromptTemplate and then pass it to SystemMessagePromptTemplate.

Step 4.1: Create an External PromptTemplate

python 复制代码
prompt = PromptTemplate(
    template="You are a helpful assistant that translates {input_language} to {output_language}.",
    input_variables=["input_language", "output_language"],  # Explicitly list variables
)

Step 4.2: Wrap into SystemMessagePromptTemplate

python 复制代码
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)

Note: You can combine this system message prompt with the same human_message_prompt (from Method 1) into a ChatPromptTemplate and run it---same as Step 3.2 and 3.3.

Key Takeaways

  • Chat model prompts are built with message templates (e.g., SystemMessagePromptTemplate).
  • Two ways to create message templates: from_template (concise) or external PromptTemplate (flexible).
  • ChatPromptTemplate.from_messages() combines multiple message templates.
  • format_prompt().to_messages() converts the template to chat-model-compatible messages.
相关推荐
凡人叶枫1 分钟前
C++中智能指针详解(Linux实战版)| 彻底解决内存泄漏,新手也能吃透
java·linux·c语言·开发语言·c++·嵌入式开发
JMchen12316 分钟前
Android后台服务与网络保活:WorkManager的实战应用
android·java·网络·kotlin·php·android-studio
yuanmenghao23 分钟前
Linux 性能实战 | 第 7 篇 CPU 核心负载与调度器概念
linux·网络·性能优化·unix
阔皮大师32 分钟前
INote轻量文本编辑器
java·javascript·python·c#
小法师爱分享36 分钟前
StickyNotes,简单便签超实用
java·python
qq_2975746736 分钟前
Linux 服务器 Java 开发环境搭建保姆级教程
java·linux·服务器
金牌归来发现妻女流落街头1 小时前
【从SpringBoot到SpringCloud】
java·spring boot·spring cloud
毅炼1 小时前
Java 基础常见问题总结(4)
java·后端
GR2342341 小时前
2025年影视仓TV+手机官方版 内置地址源支持高清直播
java·智能手机·软件
70asunflower1 小时前
Emulation,Simulation,Virtualization,Imitation 的区别?
linux·docker