Prompts for Chat Models in LangChain

https://python.langchain.com.cn/docs/modules/model_io/models/chat/how_to/prompts

Prompts for Chat Models in LangChain

This content is based on LangChain's official documentation (langchain.com.cn) and explains prompts for chat models---which are built around messages (not just plain text)---in simplified terms. It strictly preserves all original source codes, examples, and knowledge points without any additions or modifications.

1. Key Feature of Chat Model Prompts

Prompts for chat models are structured around messages (e.g., system messages, human messages, AI messages) rather than single blocks of text.

  • Use MessagePromptTemplate (and its subclasses like SystemMessagePromptTemplate, HumanMessagePromptTemplate) to create reusable message templates.
  • Combine multiple MessagePromptTemplates into a ChatPromptTemplate.
  • Use ChatPromptTemplate.format_prompt() to generate a PromptValue, which can be converted to a string or message objects (for chat models).

2. Step 1: Import Required Modules

The code below imports all necessary classes---exactly as in the original documentation:

python 复制代码
from langchain import PromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

Note: A chat model (e.g., ChatOpenAI) is required to run the final step, but it is not imported in the original documentation---we will reference it as chat (consistent with the original code).

3. Method 1: Create Message Templates with from_template

This is a concise way to build MessagePromptTemplates directly from template strings.

Step 3.1: Create System and Human Message Templates

python 复制代码
# System message template: Defines the assistant's role (translator)
template = "You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)

# Human message template: Defines the user's input (text to translate)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

Step 3.2: Combine into ChatPromptTemplate

python 复制代码
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

Step 3.3: Format and Run the Prompt

Use format_prompt() to fill in the placeholders, convert to messages, and pass to the chat model. The original code and output are preserved exactly:

python 复制代码
# Get formatted messages and pass to the chat model
chat(chat_prompt.format_prompt(
    input_language="English", 
    output_language="French", 
    text="I love programming."
).to_messages())

Output (exact as original):

复制代码
AIMessage(content="J'adore la programmation.", additional_kwargs={})

4. Method 2: Create Message Templates with External PromptTemplate

For more flexibility, you can first define a PromptTemplate and then pass it to SystemMessagePromptTemplate.

Step 4.1: Create an External PromptTemplate

python 复制代码
prompt = PromptTemplate(
    template="You are a helpful assistant that translates {input_language} to {output_language}.",
    input_variables=["input_language", "output_language"],  # Explicitly list variables
)

Step 4.2: Wrap into SystemMessagePromptTemplate

python 复制代码
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)

Note: You can combine this system message prompt with the same human_message_prompt (from Method 1) into a ChatPromptTemplate and run it---same as Step 3.2 and 3.3.

Key Takeaways

  • Chat model prompts are built with message templates (e.g., SystemMessagePromptTemplate).
  • Two ways to create message templates: from_template (concise) or external PromptTemplate (flexible).
  • ChatPromptTemplate.from_messages() combines multiple message templates.
  • format_prompt().to_messages() converts the template to chat-model-compatible messages.
相关推荐
上海合宙LuatOS2 分钟前
LuatOS ——Modbus RTU 通信模式
java·linux·服务器·开发语言·网络·嵌入式硬件·物联网
新时代牛马8 分钟前
CANopen 协议详解
linux·微信
野生技术架构师9 分钟前
Java 21虚拟线程 vs Kotlin协程:高并发编程模型的终极对决与选型思考
java·开发语言·kotlin
Francek Chen10 分钟前
【大数据基础】实验1:熟悉常用的Linux操作和Hadoop操作
大数据·linux·hadoop·hdfs
南林yan12 分钟前
通过lspci和lsusb理解PCI设备和USB设备
linux
虾..13 分钟前
Linux 多线程,线程分离
linux·运维·服务器
Vivienne_ChenW17 分钟前
DDD领域模型在项目中的实战
java·开发语言·后端·设计模式
Coder_Boy_18 分钟前
基于SpringAI的在线考试系统-整体架构优化设计方案(续)
java·数据库·人工智能·spring boot·架构·领域驱动
勤奋的小王同学~18 分钟前
SpringMVC
java·spring·mvc
笨蛋不要掉眼泪20 分钟前
RAG知识库核心API架构全解析:从文档加载到向量检索的完整流程
java·spring boot·redis·ai·架构