Prompts for Chat Models in LangChain

https://python.langchain.com.cn/docs/modules/model_io/models/chat/how_to/prompts

Prompts for Chat Models in LangChain

This content is based on LangChain's official documentation (langchain.com.cn) and explains prompts for chat models---which are built around messages (not just plain text)---in simplified terms. It strictly preserves all original source codes, examples, and knowledge points without any additions or modifications.

1. Key Feature of Chat Model Prompts

Prompts for chat models are structured around messages (e.g., system messages, human messages, AI messages) rather than single blocks of text.

  • Use MessagePromptTemplate (and its subclasses like SystemMessagePromptTemplate, HumanMessagePromptTemplate) to create reusable message templates.
  • Combine multiple MessagePromptTemplates into a ChatPromptTemplate.
  • Use ChatPromptTemplate.format_prompt() to generate a PromptValue, which can be converted to a string or message objects (for chat models).

2. Step 1: Import Required Modules

The code below imports all necessary classes---exactly as in the original documentation:

python 复制代码
from langchain import PromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

Note: A chat model (e.g., ChatOpenAI) is required to run the final step, but it is not imported in the original documentation---we will reference it as chat (consistent with the original code).

3. Method 1: Create Message Templates with from_template

This is a concise way to build MessagePromptTemplates directly from template strings.

Step 3.1: Create System and Human Message Templates

python 复制代码
# System message template: Defines the assistant's role (translator)
template = "You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)

# Human message template: Defines the user's input (text to translate)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

Step 3.2: Combine into ChatPromptTemplate

python 复制代码
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

Step 3.3: Format and Run the Prompt

Use format_prompt() to fill in the placeholders, convert to messages, and pass to the chat model. The original code and output are preserved exactly:

python 复制代码
# Get formatted messages and pass to the chat model
chat(chat_prompt.format_prompt(
    input_language="English", 
    output_language="French", 
    text="I love programming."
).to_messages())

Output (exact as original):

复制代码
AIMessage(content="J'adore la programmation.", additional_kwargs={})

4. Method 2: Create Message Templates with External PromptTemplate

For more flexibility, you can first define a PromptTemplate and then pass it to SystemMessagePromptTemplate.

Step 4.1: Create an External PromptTemplate

python 复制代码
prompt = PromptTemplate(
    template="You are a helpful assistant that translates {input_language} to {output_language}.",
    input_variables=["input_language", "output_language"],  # Explicitly list variables
)

Step 4.2: Wrap into SystemMessagePromptTemplate

python 复制代码
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)

Note: You can combine this system message prompt with the same human_message_prompt (from Method 1) into a ChatPromptTemplate and run it---same as Step 3.2 and 3.3.

Key Takeaways

  • Chat model prompts are built with message templates (e.g., SystemMessagePromptTemplate).
  • Two ways to create message templates: from_template (concise) or external PromptTemplate (flexible).
  • ChatPromptTemplate.from_messages() combines multiple message templates.
  • format_prompt().to_messages() converts the template to chat-model-compatible messages.
相关推荐
一叶飘零_sweeeet2 小时前
不止于 API 调用:解锁 Java 工具类设计的三重境界 —— 可复用性、线程安全与性能优化
java·工具类
李昊哲小课2 小时前
Ubuntu 24.04 MariaDB 完整安装与配置文档
linux·ubuntu·mariadb
人间打气筒(Ada)3 小时前
zerotier内网穿透部署(rockylinux部署本地服务器)超详细~~~
linux·内网穿透·内网·公网·zerotier·穿透
A阳俊yi3 小时前
Spring Data JPA
java·开发语言
小王不爱笑1324 小时前
Spring AOP(AOP+JDBC 模板 + 转账案例)
java·后端·spring
遇印记4 小时前
蓝桥java蜗牛
java·学习·蓝桥杯
Elias不吃糖4 小时前
Git常用指令合集
linux·git
m0_565611134 小时前
Java-泛型
java·windows
张np4 小时前
java基础-集合接口(Collection)
java·开发语言