Prompts for Chat Models in LangChain

https://python.langchain.com.cn/docs/modules/model_io/models/chat/how_to/prompts

Prompts for Chat Models in LangChain

This content is based on LangChain's official documentation (langchain.com.cn) and explains prompts for chat models---which are built around messages (not just plain text)---in simplified terms. It strictly preserves all original source codes, examples, and knowledge points without any additions or modifications.

1. Key Feature of Chat Model Prompts

Prompts for chat models are structured around messages (e.g., system messages, human messages, AI messages) rather than single blocks of text.

  • Use MessagePromptTemplate (and its subclasses like SystemMessagePromptTemplate, HumanMessagePromptTemplate) to create reusable message templates.
  • Combine multiple MessagePromptTemplates into a ChatPromptTemplate.
  • Use ChatPromptTemplate.format_prompt() to generate a PromptValue, which can be converted to a string or message objects (for chat models).

2. Step 1: Import Required Modules

The code below imports all necessary classes---exactly as in the original documentation:

python 复制代码
from langchain import PromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

Note: A chat model (e.g., ChatOpenAI) is required to run the final step, but it is not imported in the original documentation---we will reference it as chat (consistent with the original code).

3. Method 1: Create Message Templates with from_template

This is a concise way to build MessagePromptTemplates directly from template strings.

Step 3.1: Create System and Human Message Templates

python 复制代码
# System message template: Defines the assistant's role (translator)
template = "You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)

# Human message template: Defines the user's input (text to translate)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

Step 3.2: Combine into ChatPromptTemplate

python 复制代码
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

Step 3.3: Format and Run the Prompt

Use format_prompt() to fill in the placeholders, convert to messages, and pass to the chat model. The original code and output are preserved exactly:

python 复制代码
# Get formatted messages and pass to the chat model
chat(chat_prompt.format_prompt(
    input_language="English", 
    output_language="French", 
    text="I love programming."
).to_messages())

Output (exact as original):

复制代码
AIMessage(content="J'adore la programmation.", additional_kwargs={})

4. Method 2: Create Message Templates with External PromptTemplate

For more flexibility, you can first define a PromptTemplate and then pass it to SystemMessagePromptTemplate.

Step 4.1: Create an External PromptTemplate

python 复制代码
prompt = PromptTemplate(
    template="You are a helpful assistant that translates {input_language} to {output_language}.",
    input_variables=["input_language", "output_language"],  # Explicitly list variables
)

Step 4.2: Wrap into SystemMessagePromptTemplate

python 复制代码
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)

Note: You can combine this system message prompt with the same human_message_prompt (from Method 1) into a ChatPromptTemplate and run it---same as Step 3.2 and 3.3.

Key Takeaways

  • Chat model prompts are built with message templates (e.g., SystemMessagePromptTemplate).
  • Two ways to create message templates: from_template (concise) or external PromptTemplate (flexible).
  • ChatPromptTemplate.from_messages() combines multiple message templates.
  • format_prompt().to_messages() converts the template to chat-model-compatible messages.
相关推荐
想不明白的过度思考者18 分钟前
Spring Boot 配置文件深度解析
java·spring boot·后端
第二只羽毛20 分钟前
Java图书管理系统的设计与实现
java·大数据·安全·系统安全
Full Stack Developme2 小时前
Linux 多种压缩格式,优缺点和适用场景
linux·运维·服务器
旖旎夜光2 小时前
Linux(4)(下)
linux·学习
cike_y5 小时前
Mybatis之解析配置优化
java·开发语言·tomcat·mybatis·安全开发
Shanxun Liao7 小时前
Cenots 7.9 配置多台 SSH 互信登陆免密码
linux·运维·ssh
j_xxx404_7 小时前
Linux:第一个程序--进度条|区分回车与换行|行缓冲区|进度条代码两个版本|代码测试与优化
linux·运维·服务器
是一个Bug7 小时前
Java基础50道经典面试题(四)
java·windows·python
Slow菜鸟7 小时前
Java基础架构设计(三)| 通用响应与异常处理(分布式应用通用方案)
java·开发语言
我是Superman丶7 小时前
《Spring WebFlux 实战:基于 SSE 实现多类型事件流(支持聊天消息、元数据与控制指令混合传输)》
java