结合 Leetcode 题探究KMP算法

一、题目

找出字符串中第一个匹配项的下标

二、思路

2.1 KMP的核心思想

  • 与普通的双层暴力遍历相比,KMP算法的精髓在于利用已匹配的前缀信息来优化搜索过程 。当发生不匹配时,算法不是简单地将模式串后移一位重新开始,而是根据预先计算的next数组,直接将模式串滑动到下一个可能匹配的位置。

2.2 next数组的实质

next[i] 表示在模式串的前 i 个字符组成的子串中,最长的相等真前缀与真后缀的长度。

  • 真前缀:不包含最后一个字符的前缀

  • 真后缀:不包含第一个字符的后缀

  • 核心价值 :当字符匹配失败时,next[i] 告诉我们模式串应该回溯到什么位置继续匹配

2.3 基础递推关系

next[i] 的计算基于 next[i-1] 和当前字符 pattern[i]

  1. 已知条件 :若 next[i-1] = lastNextLen,表明子串 pattern[0...lastNextLen-1] 中,前 lastNextLen 个字符与后 lastNextLen 个字符完全相等

    复制代码
    pattern[0...lastNextLen-1] == pattern[i-lastNextLen...i-1]
  2. 关键比较 :为了高效计算,利用上述 next[i-1]中已经包含的信息,比较 pattern[lastNextLen]pattern[i],就可以得到next[i]

(1) 如果相等next[i] = lastNextLen + 1(相等前后缀长度增加1)

(2) 如果不相等 :回溯到 next[lastNextLen] 继续尝试匹配

三、代码

java 复制代码
class Solution {
    public int strStr(String haystack, String needle) {
        // 使用KMP算法

        // 1、得到 next 数组
        int[] next = getNextArray(needle);

        // 2、借助 next 数组完成遍历
        int i = 0;  // 母串指针
        int j = 0;  // 子串指针
        int m = haystack.length();
        int n = needle.length();
        while(i < m && j < n){
            if(j == -1 || haystack.charAt(i) == needle.charAt(j)){
                i++;
                j++;
            }else{
                j = next[j];
            }
        }

        return j == n ? i - n : -1; // 判断子串的指针是否已经遍历完成
    }

    private int[] getNextArray(String s){
        // next数组其实是不包含当前字符的使得真前缀与真后缀相同的最大长度
        // 也就是 next[i] 要借助 next[i-1] 和 s.charAt(i) 来得到
        // 若 next[i-1] = lastNextLen 可知,s 的 [0, lastNextLen-1] 对应的字符串 == s 的 [i-1-lastNextLen, i-1]
        // 为最大地利用现有资源,所以先判断 s.charAt(lastNextLen) ?= s.charAt(i)
        // 若不等,则继续回溯进行判断
        int len = s.length();
        int[] next = new int[len];
        next[0] = -1;
        int lastNext = -1;       // 记录上一个next

        int i = 0;
        while(i < len - 1){
            // lastNext == -1:说明已经回溯到开头,没有公共前后缀,next[i+1] = 0
            // s[i] == s[lastNext]:当前字符匹配成功,最长公共前后缀长度+1
            if(lastNext == -1 || s.charAt(i) == s.charAt(lastNext)){  
                next[i + 1] = lastNext + 1;
                i++;
                lastNext++; 
            }else{  // 字符不匹配时,利用已计算的next信息进行回溯,找到更短的相同前后缀继续尝试匹配
                lastNext = next[lastNext];
            }
        }  

        return next;
    }
}
相关推荐
高洁013 小时前
图神经网络初探(2)
人工智能·深度学习·算法·机器学习·transformer
爱装代码的小瓶子3 小时前
算法【c++】二叉树搜索树转换成排序双向链表
c++·算法·链表
思成Codes4 小时前
数据结构:基础线段树——线段树系列(提供模板)
数据结构·算法
虾..5 小时前
Linux 简单日志程序
linux·运维·算法
Trent19855 小时前
影楼精修-眼镜祛反光算法详解
图像处理·人工智能·算法·计算机视觉·aigc
蓝色汪洋5 小时前
经典修路问题
开发语言·c++·算法
csuzhucong5 小时前
122魔方、123魔方
算法
Salt_07286 小时前
DAY 40 早停策略和模型权重的保存
人工智能·python·算法·机器学习
卜锦元6 小时前
Golang后端性能优化手册(第三章:代码层面性能优化)
开发语言·数据结构·后端·算法·性能优化·golang
Binky6786 小时前
力扣--回溯篇(2)
算法·leetcode·职场和发展