LeetCode 118: Pascal‘s Triangle

LeetCode 118: Pascal's Triangle

    • [1. 📌 Problem Links](#1. 📌 Problem Links)
    • [2. 🧠 Solution Overview](#2. 🧠 Solution Overview)
    • [3. 🟢 Solution 1: Dynamic Programming (Iterative)](#3. 🟢 Solution 1: Dynamic Programming (Iterative))
      • [3.1. Algorithm Idea](#3.1. Algorithm Idea)
      • [3.2. Key Points](#3.2. Key Points)
      • [3.3. Java Implementation](#3.3. Java Implementation)
      • [3.4. Complexity Analysis](#3.4. Complexity Analysis)
    • [4. 🟡 Solution 2: In-Place Update (Space Optimized)](#4. 🟡 Solution 2: In-Place Update (Space Optimized))
      • [4.1. Algorithm Idea](#4.1. Algorithm Idea)
      • [4.2. Key Points](#4.2. Key Points)
      • [4.3. Java Implementation](#4.3. Java Implementation)
      • [4.4. Complexity Analysis](#4.4. Complexity Analysis)
    • [5. 🔵 Solution 3: Recursive Approach](#5. 🔵 Solution 3: Recursive Approach)
      • [5.1. Algorithm Idea](#5.1. Algorithm Idea)
      • [5.2. Key Points](#5.2. Key Points)
      • [5.3. Java Implementation](#5.3. Java Implementation)
      • [5.4. Complexity Analysis](#5.4. Complexity Analysis)
    • [6. 📊 Solution Comparison](#6. 📊 Solution Comparison)
    • [7. 💡 Summary](#7. 💡 Summary)

LeetCode 118: Pascal's Triangle

2. 🧠 Solution Overview

The Pascal's Triangle problem requires generating the first numRows of Pascal's Triangle, where each number is the sum of the two numbers directly above it . Below are the main approaches:

Method Key Idea Time Complexity Space Complexity
Dynamic Programming Build each row based on previous row O(n²) O(n²)
Space-Optimized DP Update rows in place O(n²) O(1) excluding result
Recursive Approach Top-down with memoization O(n²) O(n²)

3. 🟢 Solution 1: Dynamic Programming (Iterative)

3.1. Algorithm Idea

We use iterative dynamic programming where each row is built based on the previous row. The key observation is that each element (except the first and last in each row) equals the sum of the element directly above it and the element to the left of the one directly above it . We systematically build the triangle row by row.

3.2. Key Points

  • Row Construction: Each row starts and ends with 1
  • Inner Elements : triangle[i][j] = triangle[i-1][j-1] + triangle[i-1][j]
  • Base Case : First row is always [1]
  • Order Matters: Process rows sequentially from top to bottom

3.3. Java Implementation

java 复制代码
class Solution {
    public List<List<Integer>> generate(int numRows) {
        List<List<Integer>> triangle = new ArrayList<>();
        
        if (numRows == 0) return triangle;
        
        // First row is always [1]
        List<Integer> firstRow = new ArrayList<>();
        firstRow.add(1);
        triangle.add(firstRow);
        
        for (int i = 1; i < numRows; i++) {
            List<Integer> prevRow = triangle.get(i - 1);
            List<Integer> currentRow = new ArrayList<>();
            
            // First element is always 1
            currentRow.add(1);
            
            // Calculate inner elements
            for (int j = 1; j < i; j++) {
                currentRow.add(prevRow.get(j - 1) + prevRow.get(j));
            }
            
            // Last element is always 1
            currentRow.add(1);
            
            triangle.add(currentRow);
        }
        
        return triangle;
    }
}

3.4. Complexity Analysis

  • Time Complexity : O(n²) - We process each element in the triangular structure
  • Space Complexity : O(n²) - To store the entire triangle as output

4. 🟡 Solution 2: In-Place Update (Space Optimized)

4.1. Algorithm Idea

This approach optimizes space by reusing arrays and updating values intelligently. It adds 1 at the beginning of each row and then updates the inner values by traversing backwards .

4.2. Key Points

  • Efficient Storage: Use single list and update in reverse order
  • Backward Processing: Update from end to beginning to avoid overwriting values
  • Row Reuse: Modify the same row instead of creating new ones

4.3. Java Implementation

java 复制代码
class Solution {
    public List<List<Integer>> generate(int numRows) {
        List<List<Integer>> result = new ArrayList<>();
        if (numRows < 1) return result;
        
        List<Integer> row = new ArrayList<>();
        for (int i = 0; i < numRows; i++) {
            // Add 1 at the beginning
            row.add(0, 1);
            
            // Update inner elements (skip first and last)
            for (int j = 1; j < row.size() - 1; j++) {
                row.set(j, row.get(j) + row.get(j + 1));
            }
            
            result.add(new ArrayList<>(row));
        }
        return result;
    }
}

4.4. Complexity Analysis

  • Time Complexity : O(n²) - Same number of operations as standard DP
  • Space Complexity : O(1) excluding result - Only one temporary row used

5. 🔵 Solution 3: Recursive Approach

5.1. Algorithm Idea

We can solve this recursively by recognizing that each row depends only on the previous row. The recursive approach builds the triangle from the bottom up using the recurrence relation .

5.2. Key Points

  • Base Case : Return [[1]] when numRows = 1
  • Recursive Relation: Build n-1 rows, then construct nth row from (n-1)th row
  • Memoization: Naturally caches previous rows through recursion stack

5.3. Java Implementation

java 复制代码
class Solution {
    public List<List<Integer>> generate(int numRows) {
        // Base case
        if (numRows == 0) return new ArrayList<>();
        if (numRows == 1) {
            List<List<Integer>> triangle = new ArrayList<>();
            triangle.add(Arrays.asList(1));
            return triangle;
        }
        
        // Recursively get previous rows
        List<List<Integer>> prevTriangle = generate(numRows - 1);
        List<Integer> prevRow = prevTriangle.get(prevTriangle.size() - 1);
        List<Integer> currentRow = new ArrayList<>();
        
        currentRow.add(1);
        for (int i = 1; i < prevRow.size(); i++) {
            currentRow.add(prevRow.get(i - 1) + prevRow.get(i));
        }
        currentRow.add(1);
        
        prevTriangle.add(currentRow);
        return prevTriangle;
    }
}

5.4. Complexity Analysis

  • Time Complexity : O(n²) - Same number of operations as iterative approach
  • Space Complexity : O(n²) - For recursion stack and result storage

6. 📊 Solution Comparison

Solution Time Space Pros Cons
Standard DP O(n²) O(n²) Most intuitive, easy to understand Higher memory usage
Space Optimized O(n²) O(1) Memory efficient, clever approach Less intuitive
Recursive O(n²) O(n²) Natural mathematical expression Stack overflow risk for large n

7. 💡 Summary

For Pascal's Triangle problem:

  • Standard DP is recommended for learning and understanding the fundamental pattern
  • Space-optimized approach is best for interviews and memory-constrained environments
  • Recursive solution helps understand the mathematical recurrence but has practical limitations

The key insight is recognizing the combinatorial nature - each element represents binomial coefficients and can be calculated from previous elements using simple addition .

Pascal's Triangle reveals the beautiful simplicity underlying complex patterns - where every new layer builds upon the foundation of what came before, much like the cumulative nature of knowledge itself.

相关推荐
忆锦紫18 小时前
图像增强算法:Gamma映射算法及MATLAB实现
开发语言·算法·matlab
玄〤18 小时前
黑马点评中 VoucherOrderServiceImpl 实现类中的一人一单实现解析(单机部署)
java·数据库·redis·笔记·后端·mybatis·springboot
t1987512818 小时前
基于自适应Chirplet变换的雷达回波微多普勒特征提取
算法
guygg8818 小时前
采用PSO算法优化PID参数,通过调用Simulink和PSO使得ITAE标准最小化
算法
老鼠只爱大米19 小时前
LeetCode算法题详解 239:滑动窗口最大值
算法·leetcode·双端队列·滑动窗口·滑动窗口最大值·单调队列
J_liaty19 小时前
Spring Boot拦截器与过滤器深度解析
java·spring boot·后端·interceptor·filter
好好沉淀19 小时前
1.13草花互动面试
面试·职场和发展
mit6.82419 小时前
序列化|质数筛|tips|回文dp
算法
亲爱的非洲野猪19 小时前
Java锁机制八股文
java·开发语言
rgeshfgreh19 小时前
C++字符串处理:STL string终极指南
java·jvm·算法