LeetCode 118: Pascal's Triangle
-
- [1. 📌 Problem Links](#1. 📌 Problem Links)
- [2. 🧠 Solution Overview](#2. 🧠 Solution Overview)
- [3. 🟢 Solution 1: Dynamic Programming (Iterative)](#3. 🟢 Solution 1: Dynamic Programming (Iterative))
-
- [3.1. Algorithm Idea](#3.1. Algorithm Idea)
- [3.2. Key Points](#3.2. Key Points)
- [3.3. Java Implementation](#3.3. Java Implementation)
- [3.4. Complexity Analysis](#3.4. Complexity Analysis)
- [4. 🟡 Solution 2: In-Place Update (Space Optimized)](#4. 🟡 Solution 2: In-Place Update (Space Optimized))
-
- [4.1. Algorithm Idea](#4.1. Algorithm Idea)
- [4.2. Key Points](#4.2. Key Points)
- [4.3. Java Implementation](#4.3. Java Implementation)
- [4.4. Complexity Analysis](#4.4. Complexity Analysis)
- [5. 🔵 Solution 3: Recursive Approach](#5. 🔵 Solution 3: Recursive Approach)
-
- [5.1. Algorithm Idea](#5.1. Algorithm Idea)
- [5.2. Key Points](#5.2. Key Points)
- [5.3. Java Implementation](#5.3. Java Implementation)
- [5.4. Complexity Analysis](#5.4. Complexity Analysis)
- [6. 📊 Solution Comparison](#6. 📊 Solution Comparison)
- [7. 💡 Summary](#7. 💡 Summary)
1. 📌 Problem Links
LeetCode 118: Pascal's Triangle
2. 🧠 Solution Overview
The Pascal's Triangle problem requires generating the first numRows of Pascal's Triangle, where each number is the sum of the two numbers directly above it . Below are the main approaches:
| Method | Key Idea | Time Complexity | Space Complexity |
|---|---|---|---|
| Dynamic Programming | Build each row based on previous row | O(n²) | O(n²) |
| Space-Optimized DP | Update rows in place | O(n²) | O(1) excluding result |
| Recursive Approach | Top-down with memoization | O(n²) | O(n²) |
3. 🟢 Solution 1: Dynamic Programming (Iterative)
3.1. Algorithm Idea
We use iterative dynamic programming where each row is built based on the previous row. The key observation is that each element (except the first and last in each row) equals the sum of the element directly above it and the element to the left of the one directly above it . We systematically build the triangle row by row.
3.2. Key Points
- Row Construction: Each row starts and ends with 1
- Inner Elements :
triangle[i][j] = triangle[i-1][j-1] + triangle[i-1][j] - Base Case : First row is always
[1] - Order Matters: Process rows sequentially from top to bottom
3.3. Java Implementation
java
class Solution {
public List<List<Integer>> generate(int numRows) {
List<List<Integer>> triangle = new ArrayList<>();
if (numRows == 0) return triangle;
// First row is always [1]
List<Integer> firstRow = new ArrayList<>();
firstRow.add(1);
triangle.add(firstRow);
for (int i = 1; i < numRows; i++) {
List<Integer> prevRow = triangle.get(i - 1);
List<Integer> currentRow = new ArrayList<>();
// First element is always 1
currentRow.add(1);
// Calculate inner elements
for (int j = 1; j < i; j++) {
currentRow.add(prevRow.get(j - 1) + prevRow.get(j));
}
// Last element is always 1
currentRow.add(1);
triangle.add(currentRow);
}
return triangle;
}
}
3.4. Complexity Analysis
- Time Complexity : O(n²) - We process each element in the triangular structure
- Space Complexity : O(n²) - To store the entire triangle as output
4. 🟡 Solution 2: In-Place Update (Space Optimized)
4.1. Algorithm Idea
This approach optimizes space by reusing arrays and updating values intelligently. It adds 1 at the beginning of each row and then updates the inner values by traversing backwards .
4.2. Key Points
- Efficient Storage: Use single list and update in reverse order
- Backward Processing: Update from end to beginning to avoid overwriting values
- Row Reuse: Modify the same row instead of creating new ones
4.3. Java Implementation
java
class Solution {
public List<List<Integer>> generate(int numRows) {
List<List<Integer>> result = new ArrayList<>();
if (numRows < 1) return result;
List<Integer> row = new ArrayList<>();
for (int i = 0; i < numRows; i++) {
// Add 1 at the beginning
row.add(0, 1);
// Update inner elements (skip first and last)
for (int j = 1; j < row.size() - 1; j++) {
row.set(j, row.get(j) + row.get(j + 1));
}
result.add(new ArrayList<>(row));
}
return result;
}
}
4.4. Complexity Analysis
- Time Complexity : O(n²) - Same number of operations as standard DP
- Space Complexity : O(1) excluding result - Only one temporary row used
5. 🔵 Solution 3: Recursive Approach
5.1. Algorithm Idea
We can solve this recursively by recognizing that each row depends only on the previous row. The recursive approach builds the triangle from the bottom up using the recurrence relation .
5.2. Key Points
- Base Case : Return
[[1]]whennumRows = 1 - Recursive Relation: Build n-1 rows, then construct nth row from (n-1)th row
- Memoization: Naturally caches previous rows through recursion stack
5.3. Java Implementation
java
class Solution {
public List<List<Integer>> generate(int numRows) {
// Base case
if (numRows == 0) return new ArrayList<>();
if (numRows == 1) {
List<List<Integer>> triangle = new ArrayList<>();
triangle.add(Arrays.asList(1));
return triangle;
}
// Recursively get previous rows
List<List<Integer>> prevTriangle = generate(numRows - 1);
List<Integer> prevRow = prevTriangle.get(prevTriangle.size() - 1);
List<Integer> currentRow = new ArrayList<>();
currentRow.add(1);
for (int i = 1; i < prevRow.size(); i++) {
currentRow.add(prevRow.get(i - 1) + prevRow.get(i));
}
currentRow.add(1);
prevTriangle.add(currentRow);
return prevTriangle;
}
}
5.4. Complexity Analysis
- Time Complexity : O(n²) - Same number of operations as iterative approach
- Space Complexity : O(n²) - For recursion stack and result storage
6. 📊 Solution Comparison
| Solution | Time | Space | Pros | Cons |
|---|---|---|---|---|
| Standard DP | O(n²) | O(n²) | Most intuitive, easy to understand | Higher memory usage |
| Space Optimized | O(n²) | O(1) | Memory efficient, clever approach | Less intuitive |
| Recursive | O(n²) | O(n²) | Natural mathematical expression | Stack overflow risk for large n |
7. 💡 Summary
For Pascal's Triangle problem:
- Standard DP is recommended for learning and understanding the fundamental pattern
- Space-optimized approach is best for interviews and memory-constrained environments
- Recursive solution helps understand the mathematical recurrence but has practical limitations
The key insight is recognizing the combinatorial nature - each element represents binomial coefficients and can be calculated from previous elements using simple addition .
Pascal's Triangle reveals the beautiful simplicity underlying complex patterns - where every new layer builds upon the foundation of what came before, much like the cumulative nature of knowledge itself.