LeetCode 118: Pascal‘s Triangle

LeetCode 118: Pascal's Triangle

    • [1. 📌 Problem Links](#1. 📌 Problem Links)
    • [2. 🧠 Solution Overview](#2. 🧠 Solution Overview)
    • [3. 🟢 Solution 1: Dynamic Programming (Iterative)](#3. 🟢 Solution 1: Dynamic Programming (Iterative))
      • [3.1. Algorithm Idea](#3.1. Algorithm Idea)
      • [3.2. Key Points](#3.2. Key Points)
      • [3.3. Java Implementation](#3.3. Java Implementation)
      • [3.4. Complexity Analysis](#3.4. Complexity Analysis)
    • [4. 🟡 Solution 2: In-Place Update (Space Optimized)](#4. 🟡 Solution 2: In-Place Update (Space Optimized))
      • [4.1. Algorithm Idea](#4.1. Algorithm Idea)
      • [4.2. Key Points](#4.2. Key Points)
      • [4.3. Java Implementation](#4.3. Java Implementation)
      • [4.4. Complexity Analysis](#4.4. Complexity Analysis)
    • [5. 🔵 Solution 3: Recursive Approach](#5. 🔵 Solution 3: Recursive Approach)
      • [5.1. Algorithm Idea](#5.1. Algorithm Idea)
      • [5.2. Key Points](#5.2. Key Points)
      • [5.3. Java Implementation](#5.3. Java Implementation)
      • [5.4. Complexity Analysis](#5.4. Complexity Analysis)
    • [6. 📊 Solution Comparison](#6. 📊 Solution Comparison)
    • [7. 💡 Summary](#7. 💡 Summary)

LeetCode 118: Pascal's Triangle

2. 🧠 Solution Overview

The Pascal's Triangle problem requires generating the first numRows of Pascal's Triangle, where each number is the sum of the two numbers directly above it . Below are the main approaches:

Method Key Idea Time Complexity Space Complexity
Dynamic Programming Build each row based on previous row O(n²) O(n²)
Space-Optimized DP Update rows in place O(n²) O(1) excluding result
Recursive Approach Top-down with memoization O(n²) O(n²)

3. 🟢 Solution 1: Dynamic Programming (Iterative)

3.1. Algorithm Idea

We use iterative dynamic programming where each row is built based on the previous row. The key observation is that each element (except the first and last in each row) equals the sum of the element directly above it and the element to the left of the one directly above it . We systematically build the triangle row by row.

3.2. Key Points

  • Row Construction: Each row starts and ends with 1
  • Inner Elements : triangle[i][j] = triangle[i-1][j-1] + triangle[i-1][j]
  • Base Case : First row is always [1]
  • Order Matters: Process rows sequentially from top to bottom

3.3. Java Implementation

java 复制代码
class Solution {
    public List<List<Integer>> generate(int numRows) {
        List<List<Integer>> triangle = new ArrayList<>();
        
        if (numRows == 0) return triangle;
        
        // First row is always [1]
        List<Integer> firstRow = new ArrayList<>();
        firstRow.add(1);
        triangle.add(firstRow);
        
        for (int i = 1; i < numRows; i++) {
            List<Integer> prevRow = triangle.get(i - 1);
            List<Integer> currentRow = new ArrayList<>();
            
            // First element is always 1
            currentRow.add(1);
            
            // Calculate inner elements
            for (int j = 1; j < i; j++) {
                currentRow.add(prevRow.get(j - 1) + prevRow.get(j));
            }
            
            // Last element is always 1
            currentRow.add(1);
            
            triangle.add(currentRow);
        }
        
        return triangle;
    }
}

3.4. Complexity Analysis

  • Time Complexity : O(n²) - We process each element in the triangular structure
  • Space Complexity : O(n²) - To store the entire triangle as output

4. 🟡 Solution 2: In-Place Update (Space Optimized)

4.1. Algorithm Idea

This approach optimizes space by reusing arrays and updating values intelligently. It adds 1 at the beginning of each row and then updates the inner values by traversing backwards .

4.2. Key Points

  • Efficient Storage: Use single list and update in reverse order
  • Backward Processing: Update from end to beginning to avoid overwriting values
  • Row Reuse: Modify the same row instead of creating new ones

4.3. Java Implementation

java 复制代码
class Solution {
    public List<List<Integer>> generate(int numRows) {
        List<List<Integer>> result = new ArrayList<>();
        if (numRows < 1) return result;
        
        List<Integer> row = new ArrayList<>();
        for (int i = 0; i < numRows; i++) {
            // Add 1 at the beginning
            row.add(0, 1);
            
            // Update inner elements (skip first and last)
            for (int j = 1; j < row.size() - 1; j++) {
                row.set(j, row.get(j) + row.get(j + 1));
            }
            
            result.add(new ArrayList<>(row));
        }
        return result;
    }
}

4.4. Complexity Analysis

  • Time Complexity : O(n²) - Same number of operations as standard DP
  • Space Complexity : O(1) excluding result - Only one temporary row used

5. 🔵 Solution 3: Recursive Approach

5.1. Algorithm Idea

We can solve this recursively by recognizing that each row depends only on the previous row. The recursive approach builds the triangle from the bottom up using the recurrence relation .

5.2. Key Points

  • Base Case : Return [[1]] when numRows = 1
  • Recursive Relation: Build n-1 rows, then construct nth row from (n-1)th row
  • Memoization: Naturally caches previous rows through recursion stack

5.3. Java Implementation

java 复制代码
class Solution {
    public List<List<Integer>> generate(int numRows) {
        // Base case
        if (numRows == 0) return new ArrayList<>();
        if (numRows == 1) {
            List<List<Integer>> triangle = new ArrayList<>();
            triangle.add(Arrays.asList(1));
            return triangle;
        }
        
        // Recursively get previous rows
        List<List<Integer>> prevTriangle = generate(numRows - 1);
        List<Integer> prevRow = prevTriangle.get(prevTriangle.size() - 1);
        List<Integer> currentRow = new ArrayList<>();
        
        currentRow.add(1);
        for (int i = 1; i < prevRow.size(); i++) {
            currentRow.add(prevRow.get(i - 1) + prevRow.get(i));
        }
        currentRow.add(1);
        
        prevTriangle.add(currentRow);
        return prevTriangle;
    }
}

5.4. Complexity Analysis

  • Time Complexity : O(n²) - Same number of operations as iterative approach
  • Space Complexity : O(n²) - For recursion stack and result storage

6. 📊 Solution Comparison

Solution Time Space Pros Cons
Standard DP O(n²) O(n²) Most intuitive, easy to understand Higher memory usage
Space Optimized O(n²) O(1) Memory efficient, clever approach Less intuitive
Recursive O(n²) O(n²) Natural mathematical expression Stack overflow risk for large n

7. 💡 Summary

For Pascal's Triangle problem:

  • Standard DP is recommended for learning and understanding the fundamental pattern
  • Space-optimized approach is best for interviews and memory-constrained environments
  • Recursive solution helps understand the mathematical recurrence but has practical limitations

The key insight is recognizing the combinatorial nature - each element represents binomial coefficients and can be calculated from previous elements using simple addition .

Pascal's Triangle reveals the beautiful simplicity underlying complex patterns - where every new layer builds upon the foundation of what came before, much like the cumulative nature of knowledge itself.

相关推荐
毕设源码-朱学姐40 分钟前
【开题答辩全过程】以 工厂能耗分析平台的设计与实现为例,包含答辩的问题和答案
java·vue.js
智者知已应修善业1 小时前
【求中位数】2024-1-23
c语言·c++·经验分享·笔记·算法
地平线开发者2 小时前
PTQ 量化数值范围与优化
算法·自动驾驶
sali-tec2 小时前
C# 基于halcon的视觉工作流-章68 深度学习-对象检测
开发语言·算法·计算机视觉·重构·c#
测试人社区-小明2 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习2 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考3 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
java1234_小锋3 小时前
Spring IoC的实现机制是什么?
java·后端·spring
xqqxqxxq4 小时前
背单词软件技术笔记(V2.0扩展版)
java·笔记·python
消失的旧时光-19434 小时前
深入理解 Java 线程池(二):ThreadPoolExecutor 执行流程 + 运行状态 + ctl 原理全解析
java·开发语言