计算机视觉·DETR

DETR

核心创新点

  • 不需要手工设计的锚框了
  • 不再需要NMS等繁琐的操作。

方法

图像特征编码

首先通过CNN+1x1卷积得到特征图,这一步是提取图像特征,同时为了减少图像token的长度

Transformer

  • DETR设计了N个可以学习的query ∈RN×D\in R^{N\times D}∈RN×D,其中N=100,表示查询的数量

  • 如何理解这些查询?每一个查询都会生成一个分类和锚框,N的数量大于图像中实际存在的数量。

  • 这些query向量首先经过自注意力进行交互。

  • 然后作为注意力矩阵中的Q来自图像特征(编码器输出)的Q和K 进行交互。

    最终输出的维度也是RN×DR^{N\times D}RN×D,这N个锚框经过FFN分别得到分类结果和锚框坐标。

损失计算

由于N的数量肯定是大于图像中真实锚框的数量和标签集M,因此作者引入了一个No Object作为新的标签集。

就像NMS一样,作者需要减少锚框的数量。

具体来说,使用匈牙利二分图匹配算法 得到生成的锚框与真实锚框之间的匹配关系 ,就是一个关系矩阵C∈RM×N\in R^{M\times N}∈RM×N
真实锚框一定有一个生成的锚框对应,但反之不一定

分类和锚框损失

  • 对于有与真实锚框对应关系 的查询结果(准确来说是该查询向量经过transformer和FFN输出后的标签和锚框坐标),分别计算交叉熵和L1损失
  • 对于没有 与任何真实锚框匹配的查询结果,也需要计算分类损失 ,其中"真实类别"为作者引入了的No Object类别
  • 对于锚框损失,没有匹配上的查询结果不需要计算。
  • 最后,只对匹配上的查结果计算GIoU 损失,用于进一步优化锚框之间的重叠程度

总损失:N个分类损失,M个锚框和GIoU损失

前者优化预测类别 ,后者直接优化锚框及其重叠程度

相关推荐
zl_vslam1 小时前
SLAM中的非线性优-3D图优化之相对位姿Between Factor(六)
前端·人工智能·算法·计算机视觉·slam se2 非线性优化
韩曙亮1 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ③ ( NLP 自然语言处理 )
人工智能·pytorch·学习·ai·自然语言处理·nlp·tensorflow
嵌入式-老费1 小时前
自己动手写深度学习框架(题外话之硬件转接板)
人工智能
黄金旺铺1 小时前
2025年学习方法与认知框架
人工智能·学习方法
丝斯20111 小时前
AI学习笔记整理(20)—— AI核心技术(深度学习4)
人工智能·笔记·学习
love530love1 小时前
【笔记】重建 Stable Diffusion WebUI 虚拟环境实录
人工智能·windows·笔记·python·stable diffusion·aigc·虚拟环境
数据与后端架构提升之路1 小时前
感知模块详解:从 OpenCV/YOLO 脚本到 多模态多任务 BEV 架构
人工智能·机器学习·自动驾驶
咚咚王者1 小时前
人工智能之数据分析 Matplotlib:第五章 常见函数
人工智能·数据分析·matplotlib
天天找自己1 小时前
TransNeXt 深度解析:聚合注意力机制的突破性视觉骨干网络
人工智能·pytorch·python·深度学习·神经网络