计算机视觉·DETR

DETR

核心创新点

  • 不需要手工设计的锚框了
  • 不再需要NMS等繁琐的操作。

方法

图像特征编码

首先通过CNN+1x1卷积得到特征图,这一步是提取图像特征,同时为了减少图像token的长度

Transformer

  • DETR设计了N个可以学习的query ∈RN×D\in R^{N\times D}∈RN×D,其中N=100,表示查询的数量

  • 如何理解这些查询?每一个查询都会生成一个分类和锚框,N的数量大于图像中实际存在的数量。

  • 这些query向量首先经过自注意力进行交互。

  • 然后作为注意力矩阵中的Q来自图像特征(编码器输出)的Q和K 进行交互。

    最终输出的维度也是RN×DR^{N\times D}RN×D,这N个锚框经过FFN分别得到分类结果和锚框坐标。

损失计算

由于N的数量肯定是大于图像中真实锚框的数量和标签集M,因此作者引入了一个No Object作为新的标签集。

就像NMS一样,作者需要减少锚框的数量。

具体来说,使用匈牙利二分图匹配算法 得到生成的锚框与真实锚框之间的匹配关系 ,就是一个关系矩阵C∈RM×N\in R^{M\times N}∈RM×N
真实锚框一定有一个生成的锚框对应,但反之不一定

分类和锚框损失

  • 对于有与真实锚框对应关系 的查询结果(准确来说是该查询向量经过transformer和FFN输出后的标签和锚框坐标),分别计算交叉熵和L1损失
  • 对于没有 与任何真实锚框匹配的查询结果,也需要计算分类损失 ,其中"真实类别"为作者引入了的No Object类别
  • 对于锚框损失,没有匹配上的查询结果不需要计算。
  • 最后,只对匹配上的查结果计算GIoU 损失,用于进一步优化锚框之间的重叠程度

总损失:N个分类损失,M个锚框和GIoU损失

前者优化预测类别 ,后者直接优化锚框及其重叠程度

相关推荐
o_insist3 分钟前
LangChain1.0 实现 PDF 文档向量检索全流程
人工智能·python·langchain
OpenMiniServer6 分钟前
AI + GitLab + VSCode:下一代开发工作流的革命性集成
人工智能·vscode·gitlab
脑洞AI食验员8 分钟前
智能体来了:用异常与文件处理守住代码底线
人工智能·python
摘星观月11 分钟前
【三维重建2】TCPFormer以及NeRF相关SOTA方法
人工智能·深度学习
shangjian00712 分钟前
AI大模型-机器学习-分类
人工智能·机器学习·分类
Tiny_React14 分钟前
使用 Claude Code Skills 模拟的视频生成流程
人工智能·音视频开发·vibecoding
人工小情绪16 分钟前
深度学习模型部署
人工智能·深度学习
Codelinghu18 分钟前
「 LLM实战 - 企业 」构建企业级RAG系统:基于Milvus向量数据库的高效检索实践
人工智能·后端·llm
幻云201022 分钟前
Next.js指南:从入门到精通
开发语言·javascript·人工智能·python·架构
智算菩萨29 分钟前
Anthropic Claude 4.5:AI分层编排的革命,成本、速度与能力的新平衡
前端·人工智能