MaskCLIP+

MaskCLIP

CLIP 是否仅能做图像级的零样本分类?还是其实已经隐含了局部/像素级的语义信息,可以直接用于语义分割?

结论是:

CLIP 内部确实已经隐含了丰富的局部语义,可直接输出密集预测,甚至能成为一种强大的开集伪监督方式。

千万不要 fine-tune CLIP,否则会破坏视觉---语言对齐

作者实验了两种天真的方案:

  • 用 CLIP 的 backbone 初始化 DeepLab 再 fine-tune
  • 使用映射器 M(text_embedding) → classifier weights
    结果都失败,原因是:
  • fine-tune 会破坏 CLIP 原有的语义空间
  • mapper 在 seen classes 上训练,无法泛化到 unseen classes
    因此 必须保持 CLIP 冻结,否则开集能力崩溃
    → 这形成 MaskCLIP 的设计原则:"不破坏 CLIP 的语义空间"

密集视觉特征

  • 对于VIT,密集视觉特征就是patch嵌入
  • 对于ResNet的骨干,其密集视觉特征是注意力池化层中的值嵌入。
    作者发现ViT上的表现比ResNet强,因为其分辨率比ResNet高,VIT:32x32,ResNet:7x7
    通过上采样 还原到原始图像的分辨率。

文本嵌入作为分类器权重

分类器权重就是将视觉特征HxWxC映射到HxWxK的矩阵,其中K是类别数。

作者直接将CLIP文本嵌入作为该权重。

去噪和平滑处理

  • 作者将注意力池化层丢弃的k重新利用过来,用于平滑输出的分割掩膜
  • 把在所有像素(位置)的预测概率都小于0.5的类别直接移除,用于去噪。


MaskCLIP+

  • MaskCLIP已经可以实现开放词汇分割了,但是效果不一定强,主要是受限于特征图分辨率太低。
  • 作者采用DeepLab作为主要分割网络,生成高质量高分辨率的特征图,利用MaskCLIP生成的分割掩码进行监督。
  • 在前1/10轮,作者采用MaskCLIP进行监督,但是后面作者采用自训练的形式,对于没有注释的转导设置,作者直接利用主要分割网络自己产生的掩码用于自训练。
相关推荐
雅欣鱼子酱1 小时前
USB Type-C PD取电(诱骗,诱电,SINK),筋膜枪专用取电芯片
网络·人工智能·芯片·电子元器件
kisshuan123967 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits7 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅7 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448378 小时前
机器学习基本概念与梯度下降
人工智能
水如烟8 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿8 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——8 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程9 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt