MaskCLIP+

MaskCLIP

CLIP 是否仅能做图像级的零样本分类?还是其实已经隐含了局部/像素级的语义信息,可以直接用于语义分割?

结论是:

CLIP 内部确实已经隐含了丰富的局部语义,可直接输出密集预测,甚至能成为一种强大的开集伪监督方式。

千万不要 fine-tune CLIP,否则会破坏视觉---语言对齐

作者实验了两种天真的方案:

  • 用 CLIP 的 backbone 初始化 DeepLab 再 fine-tune
  • 使用映射器 M(text_embedding) → classifier weights
    结果都失败,原因是:
  • fine-tune 会破坏 CLIP 原有的语义空间
  • mapper 在 seen classes 上训练,无法泛化到 unseen classes
    因此 必须保持 CLIP 冻结,否则开集能力崩溃
    → 这形成 MaskCLIP 的设计原则:"不破坏 CLIP 的语义空间"

密集视觉特征

  • 对于VIT,密集视觉特征就是patch嵌入
  • 对于ResNet的骨干,其密集视觉特征是注意力池化层中的值嵌入。
    作者发现ViT上的表现比ResNet强,因为其分辨率比ResNet高,VIT:32x32,ResNet:7x7
    通过上采样 还原到原始图像的分辨率。

文本嵌入作为分类器权重

分类器权重就是将视觉特征HxWxC映射到HxWxK的矩阵,其中K是类别数。

作者直接将CLIP文本嵌入作为该权重。

去噪和平滑处理

  • 作者将注意力池化层丢弃的k重新利用过来,用于平滑输出的分割掩膜
  • 把在所有像素(位置)的预测概率都小于0.5的类别直接移除,用于去噪。


MaskCLIP+

  • MaskCLIP已经可以实现开放词汇分割了,但是效果不一定强,主要是受限于特征图分辨率太低。
  • 作者采用DeepLab作为主要分割网络,生成高质量高分辨率的特征图,利用MaskCLIP生成的分割掩码进行监督。
  • 在前1/10轮,作者采用MaskCLIP进行监督,但是后面作者采用自训练的形式,对于没有注释的转导设置,作者直接利用主要分割网络自己产生的掩码用于自训练。
相关推荐
Techblog of HaoWANG10 分钟前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
laplace012316 分钟前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
2501_9414185518 分钟前
【计算机视觉】基于YOLO11-P6的保龄球检测与识别系统
人工智能·计算机视觉
码农三叔30 分钟前
(8-3)传感器系统与信息获取:多传感器同步与传输
人工智能·机器人·人形机器人
人工小情绪38 分钟前
Clawbot (OpenClaw)简介
人工智能
2501_933329551 小时前
品牌公关AI化实践:Infoseek舆情系统技术架构解析
人工智能·自然语言处理
咋吃都不胖lyh1 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
xiucai_cs1 小时前
AI RAG 本地知识库实战
人工智能·知识库·dify·rag·ollama
zhangfeng11331 小时前
大模型微调时 Firefly(流萤)和 LlamaFactory(LLaMA Factory)这两个工具/框架之间做出合适的选择
人工智能·llama
zhangyifang_0091 小时前
MCP——AI连接现实世界的“标准接口”
人工智能