pythonstudy Day24

复习日

@疏锦行



c 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier

# 1. 读入数据(注意路径:Kaggle Notebook 里直接就是 /kaggle/input/...)
train = pd.read_csv("/kaggle/input/titanic/train.csv")
test = pd.read_csv("/kaggle/input/titanic/test.csv")

# 2. 简单特征工程
# 选择一些比较有用的特征
features = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]

train = train[features + ["Survived"]]
test_features = test[features]

# 处理缺失值
# Age 和 Fare 用中位数填充,Embarked 用众数填充
for df in [train, test_features]:
    df["Age"].fillna(df["Age"].median(), inplace=True)
    df["Fare"].fillna(df["Fare"].median(), inplace=True)
    df["Embarked"].fillna(df["Embarked"].mode()[0], inplace=True)

# 把 Sex 和 Embarked 变成数字(one-hot 编码)
train = pd.get_dummies(train, columns=["Sex", "Embarked"])
test_features = pd.get_dummies(test_features, columns=["Sex", "Embarked"])

# 对齐列(避免测试集缺某些 dummy 列)
test_features = test_features.reindex(columns=train.drop("Survived", axis=1).columns, fill_value=0)

X = train.drop("Survived", axis=1)
y = train["Survived"]

# 3. 划分一部分训练集做本地验证(可选)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=42)

# 4. 训练模型(随机森林只是示例,其他模型也可以)
model = RandomForestClassifier(
    n_estimators=200,
    max_depth=5,
    random_state=42
)
model.fit(X_train, y_train)

# 在验证集上看一下效果(仅自我检查)
y_pred_valid = model.predict(X_valid)
print("Validation accuracy:", accuracy_score(y_valid, y_pred_valid))

# 5. 用全部训练数据重新训练,然后在测试集上预测
model.fit(X, y)
test_pred = model.predict(test_features)

# 6. 生成提交文件
submission = pd.DataFrame({
    "PassengerId": test["PassengerId"],
    "Survived": test_pred
})

submission.to_csv("submission.csv", index=False)
print("submission.csv 已保存")
相关推荐
AI视觉网奇1 小时前
数字人 语音驱动
人工智能·python
胡乱儿起个名1 小时前
Embedding查表操作
python·机器学习·embedding
伯远医学1 小时前
CUT&RUN
java·服务器·网络·人工智能·python·算法·eclipse
攻城狮7号1 小时前
微软开源的Fara-7B 如何让你的电脑长出“双手”
人工智能·fara-7b·微软开源小型语言模型·端侧ai·ai控制电脑
艾莉丝努力练剑1 小时前
【Python基础:语法第二课】Python 流程控制详解:条件语句 + 循环语句 + 人生重开模拟器实战
人工智能·爬虫·python·pycharm
Amctwd1 小时前
【数据挖掘】用户行为分析中的应用与模型构建
人工智能·数据挖掘
智链RFID1 小时前
信创RFID:涉密数据共享的“安全密钥”
网络·人工智能·安全
lisw051 小时前
社区数据仓库的可持续连接性!
大数据·数据仓库·人工智能·机器学习