目标分割学习之U_net

U_net是专门为生物医学图像而设计的分割网络。

U_net网络结构

上图是U_net的网络结构,

1)、输入图片1x572x572,经过两次3x3卷积后,变为64x568x568,

2)、2x2的max pool 下采样,变为64x284x284,经过两个卷积,变为128x280x280,

3)、下采样后,128x140x140后,变为128x140x140,经过两个卷积,变为,256x136x136;

4)、下采样后,256x68x68,经过两次卷积后,变为512x64x64;

5)、下采样后,512x32x32,经过两次卷积后,变为1024x28x28;

后面就是需要逐步进行上采样,每次上采样后,左边对应的特征层,会crop出来,然后和当前的特征进行通道上的扩充

U-Net 损失函数

U-Net是语义分割,一般语义分割,输出都是像素级别的,U-Net的输出是388x388x2,2是类别数,也就是,每个像素,都会输出,是类别1的概率,还是类别2的概率。

下图是U-Net的损失函数
在 388x388x2 输出的特征层上, ak(x)是,k特征通道,指的也是类别k,在像素位置x(二维空间)上,的数值,在某个像素位置上进行交叉熵计算,就是下面的公式。

上面公式w(x)是这个像素位置的权重,计算公式入下图:

d1是到最近的细胞边界的距离,d2是到第二近的细胞边界的距离

为什么 U-Net 适合?

U-Net 的结构本身就在为医学图像服务

1、编码--解码对称结构 → 细粒度定位能力强

下采样捕捉语义

上采样恢复空间细节

适合分割精细器官和病灶

2、跳跃连接(Skip Connections) → 边界清晰

将编码阶段的高分辨率特征直接传给解码器

相关推荐
芝士爱知识a1 分钟前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者1 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗1 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
盐焗西兰花1 小时前
鸿蒙学习实战之路-Reader Kit修改翻页方式字体大小及行间距最佳实践
学习·华为·harmonyos
QiZhang | UESTC1 小时前
学习日记day76
学习
yLDeveloper2 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
久邦科技2 小时前
20个免费电子书下载网站,实现电子书自由(2025持续更新)
学习
Coder_Boy_2 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
Gain_chance2 小时前
34-学习笔记尚硅谷数仓搭建-DWS层最近一日汇总表建表语句汇总
数据仓库·hive·笔记·学习·datagrip