目标分割学习之U_net

U_net是专门为生物医学图像而设计的分割网络。

U_net网络结构

上图是U_net的网络结构,

1)、输入图片1x572x572,经过两次3x3卷积后,变为64x568x568,

2)、2x2的max pool 下采样,变为64x284x284,经过两个卷积,变为128x280x280,

3)、下采样后,128x140x140后,变为128x140x140,经过两个卷积,变为,256x136x136;

4)、下采样后,256x68x68,经过两次卷积后,变为512x64x64;

5)、下采样后,512x32x32,经过两次卷积后,变为1024x28x28;

后面就是需要逐步进行上采样,每次上采样后,左边对应的特征层,会crop出来,然后和当前的特征进行通道上的扩充

U-Net 损失函数

U-Net是语义分割,一般语义分割,输出都是像素级别的,U-Net的输出是388x388x2,2是类别数,也就是,每个像素,都会输出,是类别1的概率,还是类别2的概率。

下图是U-Net的损失函数
在 388x388x2 输出的特征层上, ak(x)是,k特征通道,指的也是类别k,在像素位置x(二维空间)上,的数值,在某个像素位置上进行交叉熵计算,就是下面的公式。

上面公式w(x)是这个像素位置的权重,计算公式入下图:

d1是到最近的细胞边界的距离,d2是到第二近的细胞边界的距离

为什么 U-Net 适合?

U-Net 的结构本身就在为医学图像服务

1、编码--解码对称结构 → 细粒度定位能力强

下采样捕捉语义

上采样恢复空间细节

适合分割精细器官和病灶

2、跳跃连接(Skip Connections) → 边界清晰

将编码阶段的高分辨率特征直接传给解码器

相关推荐
nix.gnehc1 小时前
PyTorch自动求导
人工智能·pytorch·python
多恩Stone1 小时前
【Pytorch 深入理解(2)】减少训练显存-Gradient Checkpointing
人工智能·pytorch·python
Dfreedom.1 小时前
机器学习模型误差深度解读:从三类来源到偏差-方差权衡
人工智能·深度学习·机器学习·误差·偏差方差权衡
serve the people1 小时前
tensorflow tf.function 的 多态性(Polymorphism)
人工智能·python·tensorflow
张永清-老清1 小时前
每周读书与学习->JMeter性能测试脚本编写实战(二)- 前一个请求返回的结果作为后一个请求的入参
学习·jmeter·性能优化·性能测试·性能调优·jmeter性能测试·每周读书与学习
Rock_yzh1 小时前
LeetCode算法刷题——560. 和为 K 的子数组
数据结构·c++·学习·算法·leetcode·职场和发展·哈希算法
爱思德学术1 小时前
【EI收录】第三届智能交通及智慧城市国际会议(ICITSC 2026)
人工智能·智慧城市
wdfk_prog2 小时前
[Linux]学习笔记系列 -- [block]kyber-iosched
linux·笔记·学习
马踏岛国赏樱花2 小时前
低成本大模型构建-KTransformers
人工智能